Para $n=2$ tenemos, integrando por partes, $$I\left(2\right)=\int_{0}^{\pi/4}x^{2}\cot\left(x\right)dx=\frac{\pi^{2}}{16}\log\left(\frac{1}{\sqrt{2}}\right)-2\int_{0}^{\pi/4}x\log\left(\sin\left(x\right)\right)dx
$$ and now we can use the Fourier series of $\log\left(\sin\left(x\right)\right)$ $$\log\left(\sin\left(x\right)\right)=-\log\left(2\right)-\sum_{k\geq1}\frac{\cos\left(2kx\right)}{k},\,0<x<\pi$$ and so $$I\left(2\right)=\frac{\pi^{2}}{16}\log\left(\frac{1}{\sqrt{2}}\right)+\frac{\pi^{2}}{16}\log\left(2\right)+2\sum_{k\geq1}\frac{1}{k}\int_{0}^{\pi/4}x\cos\left(2kx\right)dx
$$ $$a=\frac{\pi^{2}}{32}\log\left(2\right)+\pi\sum_{k\geq1}\frac{\sin\left(\frac{\pi k}{2}\right)}{4k^{2}}+\frac{1}{2}\sum_{k\geq1}\frac{\cos\left(\frac{\pi k}{2}\right)}{k^{3}}-\frac{1}{2}\zeta\left(3\right)
$$ and now since $$\cos\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv2\,\mod\,4\\
1, & k\equiv0\,\mod\,4\\
0, & \textrm{otherwise}
\end{casos}
$$ we have $$\frac{1}{2}\sum_{k\geq1}\frac{\cos\left(\frac{\pi k}{2}\right)}{k^{3}}=\frac{1}{2}\sum_{k\geq1}\frac{\left(-1\right)^{k}}{8k^{3}}=-\frac{3}{64}\zeta\left(3\right)
$$ using the relation between the Dirichlet eta function and the Riemann zeta funcion. Similary, since $$\sin\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv3\,\mod\,4\\
1, & k\equiv1\,\mod\,4\\
0, & \textrm{otherwise}
\end{casos}
$$ we have $$\sum_{k\geq1}\frac{\sin\left(\frac{\pi k}{2}\right)}{k^{2}}=\sum_{k\geq1}\frac{\left(-1\right)^{k-1}}{\left(2k-1\right)^{2}}=K
$$ where $K$ is the Catalan's constant. Finally we have $$I\left(2\right)=\frac{\pi^{2}}{32}\log\left(2\right)+\frac{\pi}{4}K-\frac{35}{64}\zeta\left(3\right).$$
Anexo: Como cansado de notas, este método se puede generalizar para un general $n$. Sólo voy a escribir un esbozo de la prueba. La integración por partes tenemos $$I\left(n\right)=\int_{0}^{\pi/4}x^{n}\cot\left(x\right)dx=\frac{\pi^{n}}{4^{n}}\log\left(\frac{1}{\sqrt{2}}\right)-n\int_{0}^{\pi/4}x^{n-1}\log\left(\sin\left(x\right)\right)dx
$$ and using the Fourier series we get $$I\left(n\right)=\frac{\pi^{n}}{4^{n}}\log\left(\frac{1}{\sqrt{2}}\right)+\frac{\pi^{n}}{4^{n}}\log\left(2\right)+n\sum_{k\geq1}\frac{1}{k}\int_{0}^{\pi/4}x^{n-1}\cos\left(2kx\right)dx$$ $$=\frac{\pi^{n}}{2^{2n+1}}\log\left(2\right)+\frac{n}{2^{n}}\sum_{k\geq1}\frac{1}{k^{n+1}}\int_{0}^{k\pi/2}y^{n-1}\cos\left(y\right)dy$$ y ahora, la última integral se puede calcular mediante una iteración de integración por partes. Vamos a obtener de la serie muy similar a la de otros casos, que pueden ser tratados con el mismo de las otras opciones.