$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\fermi\pars{a,b}
\equiv
-\int_{0}^{a}{a^{3}\,{\rm d}t
\más
\,\sqrt{\,\a la izquierda(a^{2} - t^{2}\right)\left(b^{2}t^{2} +a^{4}- a^{2}t^{2}\right)\,}\,}
\,,\quad \fermi\pars{0,b} = 0}$
Al $a \not= 0$:
\begin{align}
\\[3mm]
\fermi\pars{a,b}
&=
-\sgn\pars{a}\int_{0}^{\verts{a}}{\verts{a}t^{3}\,{\rm d}t
\over
\,\sqrt{\,\left(a^{2} - t^{2}\right)\left(b^{2}t^{2} +a^{4}- a^{2}t^{2}\right)\,}\,}
\\[3mm]&=
-a\verts{a}{\rm F}\pars{\mu}\quad\mbox{where}\quad{\rm F}\pars{\mu} \equiv\int_{0}^{1}{t^{3}\,{\rm d}t
\over
\,\sqrt{\,\left(1 - t^{2}\right)\left(\mu t^{2} + 1\right)\,}\,}\,,\quad
\mu \equiv \pars{b \over a}^{2} - 1
\end{align}
\begin{align}
{\rm F}\pars{\mu} &=
\half\int_{0}^{1}{t\,{\rm d}t \over \root{\pars{1 - t}\pars{\mu t + 1}}}
\end{align}
Es claro que $\color{#00f}{{\rm F}\pars{0} = 2/3}$. Cuando
$\color{#00f}{\mu \not= 0}$ realizamos el cambio de variables
$t = 1 - x^{2}$ $\quad\iff\quad$ $x = \pars{1 - t}^{1/2}$:
\begin{align}
{\rm F}\pars{\mu}
&=
\half\int_{1}^{0}{1 - x^{2} \over x\bracks{\mu\pars{1 - x^{2}} + 1}}\,
\pars{-2x\,\dd x}
=
\int^{1}_{0}{1 - x^{2} \over \mu + 1 - \mu x^{2}}\,\dd x
\\[3mm]&=
{1 \over \mu}\int^{1}_{0}{\pars{\mu + 1- \mu x^{2}} - 1
\over \mu + 1 - \mu x^{2}}\,\dd x
={1 \over \mu} - {1 \over \mu^{2}}\int_{0}^{1}{\dd x \over \pars{1 + 1/\mu} - x^{2}}
\end{align}
- $\color{#00f}{\large \mu < 0}$:
\begin{align}
{\cal F}\pars{\mu}
&=\color{#00f}{\large{1 \over \mu} + {1 \over \mu^{2}}\int_{0}^{1}
{\dd x \over x^{2} + \pars{\root{-1 - 1/\mu}}^{2}}}
\\[3mm]&={1 \over \mu} + {1 \over \mu^{2}}\,\root{-\mu \over \mu + 1}
\arctan\pars{\root{-\mu \over \mu + 1}}
\end{align}
- $\color{#00f}{\large \mu > 0}$:
\begin{align}
{\cal F}\pars{\mu}
&={1 \over \mu} + {1 \over \mu^{2}}\int_{0}^{1}
{\dd x \over x^{2} - \pars{\root{1 + 1/\mu}}^{2}}
\\[3mm]&={1 \over \mu} + {1 \over \mu^{2}}
\int_{0}^{1}\pars{{1 \over x - \root{1 + 1/\mu}} - {1 \over x + \root{1 + 1/\mu}}}
{1 \over 2\root{1 + 1/\mu}}
\\[3mm]&=\color{#00f}{\large{1 \over \mu} + {1 \over 2\mu^{2}}\,
\root{\mu \over 1 + \mu}
\ln\pars{\verts{\root{\mu} - \root{1 + \mu} \over \root{\mu} + \root{1 + \mu}}}}
\end{align}
- $\color{#00f}{\large \mu = 0}$:
$${\cal F}\pars{\mu} = \color{#00f}{\large{\cal F}\pars{0} = {2 \over 3}} $$