Tal y como figura en los comentarios, no existe una solución general a este problema. Un ejemplo sencillo es el de la serie de $$\zeta(5)=\sum_{n=1}^\infty n^{-5}$$, que aún no ha sido demostrado ser racional o irracional.
Sin embargo, a veces podemos decir que una serie en particular debe ser trascendental si se puede "muy bien aproximada" por los números racionales.
La irracionalidad de la Medida: Para un número real $x$, considere la posibilidad de $$E(x)=\left\{ \alpha\in\mathbb{R}:\ \text{there exists infinitely many }q\ \text{with}\ \biggr|x-\frac{p}{q}\biggr|<\frac{1}{q^{\alpha}}\right\}.$$ Let $\mu(x)=\sup\left(E(x)\right).$ If $x$ is rational, then $\mu(x)=1$, and if $x$ is a quadratic irrational, then by using some theorems in continued fractions we know that $\mu(x)=2$. The Thue-Siegel-Roth Theorem tells us more generally that if x is algebraic, and not rational, then $\mu(x)=2$. Unfortunately this does not give a complete characterization since $e$ is transcendental, and $\mu(e)=2$.
La serie que son trascendentales: Considere la siguiente serie donde $q,a$ son enteros: $$\alpha_{q}(a)=\sum_{n=1}^{\infty}\frac{1}{q^{a^{n}}}.$$Then if $un\geq3$ we know that this must be transcendental. If $=2$, this test will not tell us, since then $\mu(\alpha_q(a))=2$. But this does mean that when $un=2$, the series is irrational. We can apply these ideas to certain series which have terms decreasing fast enough. Another example is $$c=\sum_{n=1}^{\infty}10^{-n!}.$$ This is called Liouvilles constant, and was one of the first examples of a transcendental number. Since $\mu(c)=\infty$, it follows that $c$ es trascendental.
Espero que ayude,