Dejemos que $I=\displaystyle\int_0^{\frac\pi2} \frac{\sin (2n+1)x}{\sin x} dx$
Como $\displaystyle\int_a^bf(x)dx=\int_a^bf(a+b-x)dx,$
$\displaystyle I=\int_0^{\frac\pi2} \frac{\sin (2n+1)(\frac\pi2-x)}{\sin (\frac\pi2-x)} dx$ $\displaystyle =\int_0^{\frac\pi2} \frac{\sin \{n\pi+\frac\pi2-(2n+1)x\}}{\cos x} dx$
$\displaystyle =\int_0^{\frac\pi2} \frac{\cos (2n+1)x}{\cos x} dx$ si $n$ está en paz.
$\displaystyle =-\int_0^{\frac\pi2} \frac{\cos (2n+1)x}{\cos x} dx$ si $n$ es impar.
Si $n$ es impar, $\displaystyle 2I=\int_0^{\frac\pi2} \frac{\sin (2n+1)x}{\sin x} dx-\int_0^{\frac\pi2} \frac{\cos (2n+1)x}{\cos x} dx$ $\displaystyle =\int_0^{\frac\pi2} \frac{\sin (2n)x}{\sin x\cos x} dx$ $\displaystyle =2\int_0^{\frac\pi2} \frac{\sin (2n)x}{\sin 2x} dx$ $\displaystyle =2\frac12\int_0^{\pi} \frac{\sin ny}{\sin y} dy$ $\displaystyle =2\int_0^{\frac{\pi}2} \frac{\sin ny}{\sin y} dy$ como $\displaystyle\frac{\sin ny}{\sin y}$ es una función par.
Así que, $\displaystyle\int_0^{\frac\pi2} \frac{\sin (2n+1)x}{\sin x} dx=I=\int_0^{\frac{\pi}2} \frac{\sin nx}{\sin x} dx$ si $n$ es impar.
De la misma manera, $\displaystyle \int_0^{\frac\pi2} \frac{\sin (2n+1)x}{\sin x} dx=\int_0^{\frac{\pi}2} \frac{\sin (n+1)x}{\sin x} dx$ si $n$ está en paz.
Si ponemos, $2n+1=2013, n=1006$ lo cual es parejo.
S0, $\displaystyle \int_0^{\frac\pi2} \frac{\sin (2013)x}{\sin x} dx=\int_0^{\frac{\pi}2} \frac{\sin (1007)x}{\sin x} dx$
Ahora, si ponemos $2n+1=1007,n=503$ que es impar.
Así que, $\displaystyle \int_0^{\frac{\pi}2} \frac{\sin (1007)x}{\sin x} dx=\int_0^{\frac{\pi}2} \frac{\sin (503)x}{\sin x} dx$
Ahora bien, si $2n+1=503,n=251$
La reducción de $n$ seguirá : $2013,1007,503,251,125,63,31,15,7,3,1$
Así que, $\displaystyle \int_0^{\frac\pi2} \frac{\sin (2013)x}{\sin x} dx=\int_0^{\frac{\pi}2} \frac{\sin x}{\sin x} dx=\frac{\pi}2$