43 votos

Triple de Euler suma resultado $\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$

En el siguiente hilo

Llegué a la siguiente resultado

$$\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$$

La definición de

$$H_k^{(p)}=\sum_{n=1}^k \frac{1}{n^p},\,\,\, H_k^{(1)}\equiv H_k $$

Pero, después de largo tiempo de evaluaciones y teniendo en cuenta que muchas de las variaciones de producto de polylogarithm integrales.

Creo que hay un enfoque más sencillo para obtener la solución, alguna idea ?

14voto

Roger Hoover Puntos 56

Creo que es razonable comenzar con: $$\sum_{k=1}^{+\infty}\frac{H_k^{(2)}H_k}{k^2}=\sum_{k=1}^{+\infty}\frac{H_k}{k^4}+\sum_{k=1}^{+\infty}\frac{H_k}{k^2}\sum_{1\leq j< k}\frac{1}{j^2},\etiqueta{1}$$ que conduce a: $$\sum_{k=1}^{+\infty}\frac{H_k^{(2)}H_k}{k^2}=\left(\sum_{k=1}^{+\infty}\frac{H_k}{k^2}\right)\left(\sum_{j=1}^{+\infty}\frac{1}{j^2}\right)-\sum_{k=1}^{+\infty}\frac{1}{k^2}\sum_{1\leq j< k}\frac{H_j}{j^2},\etiqueta{2}$$ Ahora ya: $$\operatorname{Li}_2(x)+\frac{\log^2(1-x)}{2}=\sum_{k=1}^{+\infty}\frac{H_k}{k}x^k,\etiqueta{3}$$ $$\frac{\log^2(1-x)}{2}=\sum_{k=1}^{+\infty}\frac{H_{k-1}}{k}x^k,\etiqueta{4}$$ de la siguiente manera. Dividiendo por el valor de $x$ y la integración entre $0$ y $1$, se obtiene: $$\sum_{k=1}^{+\infty}\frac{H_{k-1}}{k^2}=\frac{1}{2}\int_{0}^{1}\frac{\log^2(x)}{1-x}dx=\frac{1}{2}\int_{0}^{+\infty}\frac{u^2}{e^u-1}du=\zeta(3),\tag{5}$$ así: $$\sum_{k=1}^{+\infty}\frac{H_k^{(2)}H_k}{k^2}=2\zeta(2)\zeta(3)-\sum_{k=1}^{+\infty}\frac{1}{k^2}\sum_{1\leq j< k}\frac{H_j}{j^2}.\la etiqueta{6}$$ Para el último término de considerar: $$-\frac{\log(1-xy)}{y(1-xy)}=\sum_{k=1}^{+\infty}H_k x^k y^{k-1}, \etiqueta{7}$$ multiplicar ambos términos por $-\log(y)$ e integrar entre $0$ y $de$ 1 con respecto a $y$: $$\int_{0}^{1}\frac{\log(y)\log(1-xy)}{y(1-xy)}dy = \sum_{k=1}^{+\infty}\frac{H_k}{k^2}x^k.\la etiqueta{8}$$ Multiplicando ambos lados por $-\frac{\log x}{1-x}$ y la integración entre $0$ y $de$ 1 con respecto a $x$ debe hacer el truco. Para la última parte sólo es necesario encontrar un adecuado birational diffeomorphism de la plaza de la unidad que pone la integral en una mejor forma - una especie de "revertir la Viola-Rhin método".

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X