$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Se reduce a mostrar que el $\ul{following\ expression}$ es un número entero:
\begin{align}
\bracks{\pars{1 + \root{2}}^{n} + \pars{1 + \root{2}}^{-n} \over 2}^{2} =
{1 \over 4}\bracks{\pars{1 + \root{2}}^{2n} + \pars{1 - \root{2}}^{2n}} + \half
\end{align}
\begin{align}
&\color{#f00}{\half +
{1 \over 4}\bracks{\pars{1 + \root{2}}^{2n} + \pars{1 - \root{2}}^{2n}}}
\\[5mm] & =
\half + {1 \over 4}\bracks{\sum_{k = 0}^{2n}{2n \choose k}2^{k/2} +
\sum_{k = 0}^{2n}{2n \choose k}\pars{-1}^{k}2^{k/2}}
\\[5mm] & =
\half + {1 \over 4}\bracks{2\sum_{k = 0}^{n}{2n \choose 2k}2^{k}} =
\half + \half\bracks{1 + \sum_{k = 1}^{n}{2n \choose 2k}2^{k}} =
\color{#f00}{1 + \sum_{k = 1}^{n}{2n \choose 2k}2^{k - 1}}
\end{align}
$\ul{which\ is\ an\ integer\,\,\,}$.
De hecho, el lado derecho es $\ds{\ul{the\ value}\ \mbox{of}\ p}$:
$$
\color{#f00}{\pars{1 + \raíz{2}}^{n}} =
\color{#f00}{\raíz{1 + \sum_{k = 1}^{n}{2n \elegir 2k}2^{k - 1}} +
\raíz{\sum_{k = 1}^{n}{2n \elegir 2k}2^{k - 1}}}
$$