Hay una alternativa mejor solución?
$I=\displaystyle \int _{-100}^{100}[x^3]\,dx$ $=\displaystyle \int _{-100}^{100}[(100-100-x)^3]\,dx$ $\quad$ [$\because \int_{a}^{b}f(x)\,dx=\int_{a}^{b}f(a+b-x)\,dx$]
$=\displaystyle \int _{-100}^{100}[-x^3]\,dx$
$=\displaystyle \int _{-100}^{100}(-[x^3]-1)\,dx$ $\quad$ [$\because [x]+[-x]=-1$ al $x\notin \mathbb{Z}$]
$\Rightarrow I=-I-200$ $\quad$ $\Rightarrow I=-100$