Un poco de Generalización :
Deje $\alpha+\beta+\gamma=4C$
y $\displaystyle\tan\left(\frac{-\alpha + \beta + \gamma}4\right)\tan\left(\frac{\alpha - \beta + \gamma}4\right)\tan\left(\frac{\alpha + \beta - \gamma}4\right) = \cot C$
Como $\displaystyle \frac{-\alpha+\beta+\gamma}4=\frac{-\alpha+4C-\alpha}4=C-\frac\alpha2,$
$\displaystyle \tan\frac{-\alpha+\beta+\gamma}4=\tan\left(C-\frac\alpha2\right)=\frac{\sin\left(C-\frac\alpha2\right)}{\cos\left(C-\frac\alpha2\right)}$
Así, el problema se reduce a $\displaystyle\frac{\sin\left(C-\frac\alpha2\right)\sin\left(C-\frac\beta2\right)\sin\left(C-\frac\gamma2\right)}{\cos\left(C-\frac\alpha2\right)\cos\left(C-\frac\beta2\right)\cos\left(C-\frac\gamma2\right)}=\cot C$
$\displaystyle\implies\frac{\sin\left(C-\frac\alpha2\right)\sin\left(C-\frac\beta2\right)}{\cos\left(C-\frac\alpha2\right)\cos\left(C-\frac\beta2\right)}
=\frac{\cos\left(C-\frac\gamma2\right)\cos C}{\sin\left(C-\frac\gamma2\right)\pecado C}$
La aplicación de $\displaystyle2\sin A\sin B,2\cos A\cos B$ fórmula,
$\displaystyle\implies\frac{\cos\frac{\beta-\alpha}2-\cos\frac{4C-\beta-\alpha}2}{\cos\frac{\beta-\alpha}2+\cos\frac{4C-\beta-\alpha}2}
=\frac{\cos\left(-\frac\gamma2\right)+\cos\frac{4C-\gamma}2}{\cos\left(-\frac\gamma2\right)-\cos\frac{4C-\gamma}2}$
Ahora como $\displaystyle\alpha+\beta+\gamma=4C,$ esto se convierte en
$\displaystyle\implies\frac{\cos\frac{\beta-\alpha}2-\cos\frac{\gamma}2}{\cos\frac{\beta-\alpha}2+\cos\frac{\gamma}2}
=\frac{\cos\frac\gamma2+\cos\frac{\alpha+\beta}2}{\cos\frac\gamma2-\cos\frac{\alpha+\beta}2}$
La aplicación de Componendo y de la fundación " dividendo,
$\displaystyle\implica\frac{\cos\frac{\beta\alpha}2}{-\cos\frac{\gamma}2}
=\frac{\cos\frac{\alpha+\beta}2}{\cos\frac{\alpha+\beta}2}$
$\displaystyle\implies\cos\frac{\beta-\alpha}2\cos\frac{\beta+\alpha}2=-\cos^2\frac{\gamma}2 $
La aplicación de $2\cos A\cos B,\cos2x=2\cos^2x-1,$
$\displaystyle\frac{\cos\alpha+\cos\beta}2=-\frac{1+\cos\gamma}2$
Aquí $\displaystyle C=\frac\pi4\implies \alpha+\beta+\gamma=4C=\pi$
Si $\displaystyle C=-\frac\pi4\implies \alpha+\beta+\gamma=4C=-\pi\equiv\pi\pmod{2\pi}$
Por eso, $\displaystyle\tan\left(\frac{-\alpha + \beta + \gamma}4\right)\tan\left(\frac{\alpha - \beta + \gamma}4\right)\tan\left(\frac{\alpha + \beta - \gamma}4\right)=-1$ $\alpha+\beta+\gamma=-\pi$ o $\pi$ va a satisfacer la necesaria identidad