(I) $$\lim_{x \to \infty } \, \left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)=$$ $$\lim_{x \to \infty } \, \left(x\sqrt{1+1/x}-x\sqrt{1-1/x}\right)=$$ $$\lim_{x \to \infty } \, \left(x\sqrt{1}-x\sqrt{1}\right)=\lim_{x \to \infty } \, \left(x-x\right)=0$$ (II) $$\lim_{x \to \infty } \, \left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)=$$ $$\lim_{x \to \infty } \, \left(\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)*\frac{\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}{\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}\right)=$$ $$\lim_{x \to \infty } \, \frac{2x}{\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}=$$ $$\lim_{x \to \infty } \, \frac{2x}{\left(x\sqrt{1+1/x}+x\sqrt{1-1/x}\right)}=$$ $$\lim_{x \to \infty } \, \frac{2x}{\left(x\sqrt{1}+x\sqrt{1}\right)}=\lim_{x \to \infty } \, \frac{2x}{2x}=1$$
He encontrado estas dos formas de evaluar este límite. Sé que la respuesta es 1. La primera es seguramente incorrecta. La pregunta es: ¿por qué? ¿Qué es lo que está mal ahí?