Una forma sencilla de computación en la función de error es el uso de Kummer de la ecuación de la forma,
$
M(a,b,z)=\sum_{s=0}^{\infty} \frac{(a)_s}{(b)_s s!}z^s=1+\frac{a}{b}z+\frac{a(a+1)}{b(b+1)2!}z^2+...,\quad z \in \mathbb{C}
$
and
$
M(a,b,z)=\sum_{s=0}^{\infty}\frac{(a)_s}{\Gamma{(b+s)}s!}z^s
$
and
$
erf(z)=\frac{2z}{\sqrt{\pi}}M(.5,1.5,-z^2)=\frac{2z}{\sqrt{\pi}}e^{-z^2}M(1,1.5,z^2)
$
Aquí está el código R,
f<-function(a,b,z,maxt=5){
s=1:maxt
a=a+s
b=b+s
ss=1
for(i in s){
mt=prod(a[1:i]/b[1:i])
ss=ss+mt *z^(2*i)/factorial(i)
}
ss=2*z/sqrt(pi)*exp(-z^2)*ss
return(ss)
}
aquí está la trama, de verdad, z)