$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}&\color{#c00000}{\int_{0}^{1}{\ln^{2}\pars{1 + x} \over x}\,\dd x}
=\int_{1}^{2}{\ln^{2}\pars{x} \over x - 1}\,\dd x
=\int_{1}^{1/2}{\ln^{2}\pars{1/x} \más de 1/x - 1}\,\pars{-\,{\dd x \sobre x^{2}}}
\\[3 mm]&=\int_{1/2}^{1}{\ln^{2}\pars{x} \over x\pars{1 - x}}\,\dd x
=\int_{1/2}^{1}{\ln^{2}\pars{x} \over x}\,\dd x + \int_{1/2}^{1}{\ln^{2}\pars{x} \over 1 - x}\,\dd x
\\[3 mm]&={1 \over 3}\,\ln^{3}\pars{2}
+\color{#66f}{\sum_{n = 0}^{\infty}\int_{1/2}^{1}\ln^{2}\pars{x}x^{n}\,\dd x}
\end{align}
\begin{align}&\color{#66f}{\sum_{n = 0}^{\infty}\int_{1/2}^{1}\ln^{2}\pars{x}x^{n}
\,\dd x}
=\left.\partiald[2]{}{\mu}\sum_{n = 1}^{\infty}\int_{1/2}^{1}x^{\mu - 1}
\,\dd x\,\right\vert_{\,\mu\ =\ n}
=\left.\partiald[2]{}{\mu}\sum_{n = 1}^{\infty}
{1 - 2^{-\mu} \over \mu}\,\right\vert_{\,\mu\ =\ n}
\\[3 mm]&=2\sum_{n = 1}^{\infty}{1 \over n^{3}}
-2\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n^{3}}
-2\ln\pars{2}\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n^{2}}
-\ln^{2}\pars{2}\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n}
\\[3 mm]&=2\zeta\pars{3} - 2{\rm Li}_{3}\pars{\mitad}
-2\ln\pars{2}{\rm Li}_{2}\pars{\mitad}
-\ln^{2}\pars{2}{\rm Li}_{1}\pars{\mitad}
\end{align}
Desde este enlace
\begin{align}
{\rm Li}_{1}\pars{\mitad} &= \ln\pars{2}
\\[1 mm]
{\rm Li}_{2}\pars{\mitad} y= {\pi^{2} \más de 12} - \media\,\ln^{2}\pars{2}
\\[1 mm]
{\rm Li}_{3}\pars{\mitad} y= {1 \over 6}\,\ln^{3}\pars{2}
-{\pi^{2} \más de 12}\,\ln\pars{2} + {7 \más de 8}\,\zeta\pars{3}
\end{align}