Quiero expresar $$\sum_{n=-\infty}^\infty \dfrac{1}{(z+n)^2+a^2}$$ in closed form. What comes to mind is the formula $$\pi\cot\pi z = \dfrac{1}{z}+\sum_{n\ne 0}\left(\dfrac{1}{z-n}+\dfrac1n\right)=\dfrac{1}{z}+\sum_{n=1}^\infty\dfrac{2z}{z^2-n^2}$$ and also $$\dfrac{\pi^2}{\sin^2\pi z}=\sum_{n=-\infty}^\infty \dfrac{1}{(z-n)^2}.$$ But neither of these gives the term $(z+n)^2+a^2$ que queremos. Tal vez se puede ajustar de alguna manera?
Respuesta
¿Demasiados anuncios?Usted puede utilizar el teorema de los residuos, con base en la siguiente fórmula (no va a probar aquí):
$$\sum_{n=-\infty}^{\infty} f(n) = -\sum_k \operatorname*{Res}_{\zeta=\zeta_k} [\pi \cot{(\pi \zeta)} f(\zeta)]$$
donde $\zeta_k$ son no-entero polos de $f$. Aquí,
$$f(\zeta) = \frac1{(z+\zeta)^2+a^2}$$
de modo que los polos $\zeta_{\pm} = -z\pm i a$. La suma es, por tanto,
$$\frac{\pi \cot{\pi (z-i a)}}{i 2 a} - \frac{\pi \cot{\pi (z+i a)}}{i 2 a}= \frac{\pi}{a} \Im{[\cot{\pi(z-i a)}]}$$
Ahora,
$$\cot{\pi(z-i a)} = \frac{\cos{\pi z} \cosh{\pi a} + i \sin{\pi z} \sinh{\pi a}}{\sin{\pi z} \cosh{\pi a} - i \cos{\pi z} \sinh{\pi a}} $$
Por lo tanto, entonces la suma es
$$\sum_{n=-\infty}^{\infty} \frac1{(z+n)^2+a^2} = \frac{\pi}{2 a} \frac{\sinh{2 \pi a}}{\sin^2{\pi z} \cosh^2{\pi a} + \cos^2{\pi z} \sinh^2{\pi a}}$$
EDITAR
Esto puede ser simplificado aún más a
$$\sum_{n=-\infty}^{\infty} \frac1{(z+n)^2+a^2} = \frac{\pi}{2 a} \frac{\sinh{2 \pi a}}{\sin^2{\pi z}+\sinh^2{\pi a}}$$