Vamos a tener una oportunidad.
$$\sum_{n=0}^{+\infty}\frac{(-1)^n}{4n+1}=\int_{0}^{1}\frac{dx}{1+x^4},\qquad S=\sum_{n=0}^\infty (-1)^n\left(\frac{1}{4n+1} +\frac{1}{4n+3}\right)=\int_{0}^{1}\frac{1+x^2}{1+x^4}dx,$$
$$ S = \int_{0}^{1}\frac{x+x^{-1}}{x^{-2}+x^2}\frac{dx}{x}=\int_{1}^{+\infty}\frac{z}{(2z^2-1)\sqrt{1-z^2}}\, dz = \int_{0}^{1}\frac{dt}{(2-t^2)\sqrt{1-t^2}},$$
$$ S = \int_{0}^{\pi/2}\frac{d\theta}{2-\sin^2\theta}=\int_{0}^{\pi/2}\frac{d\theta}{1+\cos^2\theta}=\frac{1}{2}\int_{\mathbb{R}}\frac{du}{2+u^2},$$
donde en la última integral se utilizó la sustitución $\theta=\arctan u$. Esto nos da:
$$ S^2 = \frac{1}{8}\int_{\mathbb{R}^2}\frac{du\,dv}{(1+u^2)(1+v^2)}=\int_{0}^{1}\int_{0}^{+\infty}\frac{1}{(1+z^2)(1+x^2)}dx\,dz$$
Por otro lado,
$$\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\int_{0}^{1}\frac{\log y}{y^2-1}dy=\int_{0}^{1}\int_{0}^{+\infty}\frac{x}{(1+x^2)(1+x^2y^2)}dx\,dy,$$
donde me enteré de la última igualdad desde el Mike spivey se nota en el Luigi Ritmo de la prueba de $\zeta(2)=\frac{\pi^2}{6}$, sólo aquí.
Mediante la configuración de $y=\frac{z}{x}$ en el último integral obtenemos $S^2=\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}$, QED.
Así que parece que @user17762 de la prueba-por-el cuadrado-el-arco tangente de la serie y el Ritmo de la prueba puede ser combinado con el fin de obtener una muy breve prueba de su reclamación.
Por el bien de la exposición de una línea de prueba de $\zeta(2)=\frac{\pi^2}{6}$:
$$\zeta(2)=\frac{4}{3}\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\frac{4}{3}\int_{0}^{1}\frac{\log y}{y^2-1}dy=\frac{2}{3}\int_{0}^{1}\frac{1}{y^2-1}\left[\log\left(\frac{1+x^2 y^2}{1+x^2}\right)\right]_{x=0}^{+\infty}dy=\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{x}{(1+x^2)(1+x^2 y^2)}dx\,dy=\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{dx\, dz}{(1+x^2)(1+z^2)}=\frac{4}{3}\cdot\frac{\pi}{4}\cdot\frac{\pi}{2}=\frac{\pi^2}{6}.$$