Aplicar primero la Raíz Cuadrada de la Media aritmética-Media Aritmético-Geométrica Media Armónica la media de la Desigualdad (de http://tinyurl.com/84o57u4)
$$\sqrt{\frac{\left(a+\frac{1}{c}\right)^2+\left(c+\frac{1}{a}\right)^2+\left(b+\frac{1}{d}\right)^2+\left(d+\frac{1}{b}\right)^2}{4}} \geq \frac{\left(a+\frac{1}{c}\right)+\left(c+\frac{1}{a}\right)+\left(b+\frac{1}{d}\right)+\left(d+\frac{1}{b}\right)}{4}$$
Plaza de los dos lados
$$\frac{\left(a+\frac{1}{c}\right)^2+\left(c+\frac{1}{a}\right)^2+\left(b+\frac{1}{d}\right)^2+\left(d+\frac{1}{b}\right)^2}{4} \geq \frac{\left( (a+b+c+d)+(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}) \right)^2}{16}$$
Ya que sabemos el valor de $a+b+c+d=16$, aplicar la Media Aritmética, la Media Armónica de la desigualdad, es decir,
$$ \frac{a+b+c+d}{4} \geq \frac{4}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}$$
Y a partir de ahí, ya que usted dijo que usted sólo necesita consejos.