$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{0}^{\infty}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x:\ {\large ?}}$.
\begin{align}&\color{#66f}{\large%
\int_{0}^{\infty}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x}
=\int_{0}^{1}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x\
+\ \overbrace{\int_{1}^{\infty}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x}
^{\ds{\dsc{x}\ \mapsto\ \dsc{1 \over x}}}
\\[5mm]&=2\ \overbrace{\int_{0}^{1}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x}
^{\ds{\dsc{x}\ \mapsto\ \dsc{x^{1/2}}}}\ =\
={1 \over 4}\int_{0}^{1}{\ln^{2}\pars{x} \over x^2 + x + 1}\,\dd x
=\ \overbrace{{1 \over 4}\int_{0}^{1}{\pars{1 - x}\ln^{2}\pars{x} \over 1 - x^{3}}\,\dd x}
^{\ds{\dsc{x}\ \mapsto\ \dsc{x^{1/3}}}}
\\[5mm]&={1 \over 4}\int_{0}^{1}{\pars{1 - x^{1/3}}\ln^{2}\pars{x^{1/3}} \over 1 - x}\,
{1 \over 3}\,x^{-2/3}\,\dd x
={1 \over 108}\int_{0}^{1}{\pars{x^{-2/3} - x^{-1/3}}\ln^{2}\pars{x} \over 1 - x}\,
\,\dd x
\\[5mm]&={1 \over 108}\lim_{\mu\ \to\ 0}\ \partiald[2]{}{\mu}
\int_{0}^{1}{x^{\mu - 2/3} - x^{\mu - 1/3} \over 1 - x}\,\,\dd x
\\[5mm]&={1 \over 108}\lim_{\mu\ \to\ 0}\ \partiald[2]{}{\mu}\pars{%
\int_{0}^{1}{1 - x^{\mu - 1/3} \over 1 - x}\,\,\dd x
-\int_{0}^{1}{1 - x^{\mu - 2/3} \over 1 - x}\,\,\dd x}
\\[5mm]&={1 \over 108}\lim_{\mu\ \to\ 0}\ \partiald[2]{}{\mu}\bracks{%
\Psi\pars{\mu + {2 \over 3}} - \Psi\pars{\mu + {1 \over 3}}}
\end{align}
donde $\ds{\Psi}$ es la
Función Digamma.
A continuación,
\begin{align}&\color{#66f}{\large%
\int_{0}^{\infty}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x}
={1 \over 108}\bracks{\Psi''\pars{2 \over 3} - \Psi''\pars{1 \over 3}}
\end{align}
Con
Euler Reflexión Fórmula
$\ds{\Psi"\pars{1 - z}
=\Psi"\pars{z} + 2\pi^{3}\cuna\pars{\pi z}\csc^{2}\pars{\pi z}}$:
\begin{align}&\color{#66f}{\large%
\int_{0}^{\infty}{x\ln^{2}\pars{x} \over x^4 + x^2 + 1}\,\dd x}
={1 \over 54}\,\pi^{3}\ \overbrace{\cot\pars{\pi \over 3}}^{\dsc{1 \over \root{3}}}
\ \overbrace{\csc^{2}\pars{\pi \over 3}}^{\dsc{4 \over 3}}
\ = \color{#66f}{\large{2\root{3} \over 243}\,\pi^{3}}
\end{align}