$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{I\equiv\int_{0}^{\infty}\int_{0}^{\infty}
{\ln\pars{x}\ln\pars{y} \\raíz{xy}}\,\cos\pars{x + y}\,\dd x\,\dd y
=\bracks{\gamma + 2\ln\pars{2}}\pi^{2}:\ {\large ?}}$
\begin{align}
I&=\Re\int_{0}^{\infty}\int_{0}^{\infty}
{\ln\pars{x}\ln\pars{y} \over \root{xy}}\,\expo{\ic\pars{x + y}}\,\dd x\,\dd y
=\Re\braces{\bracks{\color{#c00000}{\int_{0}^{\infty}
{\ln\pars{x} \over \root{x}}\,\expo{\ic x}\,\dd x}}^{2}}
\end{align}
\begin{align}
&\color{#c00000}{\int_{0}^{\infty}
{\ln\pars{x} \over \root{x}}\,\expo{\ic x}\,\dd x}
=\lim_{\mu \to -1/2}\partiald{}{\mu}\
\overbrace{\int_{0}^{\infty}x^{\mu}\expo{\ic x}\,\dd x}
^{\ds{t\ \equiv\ -\ic x\ \imp\ x\ =\ \ic t}}\
\\[3mm]&=\lim_{\mu \to -1/2}\partiald{}{\mu}
\int_{0}^{-\ic\infty}\expo{\ic\pi\mu/2}t^{\mu}\expo{-t}\,\ic\,\dd t
\\[3mm]&=\ic\lim_{\mu \to -1/2}\partiald{}{\mu}\braces{\expo{\ic\pi\mu/2}\bracks{%
\int_{0}^{\infty}t^{\mu}\expo{-t}\,\dd t
-\overbrace{\left.\lim_{R \to \infty}\int_{-\pi/2}^{0}z^{\mu}\expo{-z}\,\dd z\,
\right\vert_{z\ \equiv\ R\expo{\ic\theta}}}^{\ds{=\ 0}}}}
\\[3mm]&=\ic\lim_{\mu \to -1/2}\partiald{}{\mu}
\bracks{\expo{\ic\pi\mu/2}\Gamma\pars{\mu + 1}}
\end{align}
donde $\ds{\Gamma\pars{z}}$ es la
La Función Gamma
${\bf\mbox{6.1.1}}$.
\begin{align}
I&=\color{#c00000}{\int_{0}^{\infty}{%
\ln\pars{x} \over \root{x}}\,\expo{\ic x}\,\dd x}
=\ic\lim_{\mu \to -1/2}
\bracks{\expo{\ic\pi\mu/2}\,{\ic\pi \over 2}\,\Gamma\pars{\mu + 1}
+\expo{\ic\pi\mu/2}\Gamma\pars{\mu + 1}\Psi\pars{\mu + 1}}
\end{align}
donde $\ds{\Psi\pars{z}}$ es la
Digamma Función De ${\bf\mbox{6.3.1}}$.
\begin{align}
I&=\color{#c00000}{\int_{0}^{\infty}{%
\ln\pars{x} \over \root{x}}\,\expo{\ic x}\,\dd x}
=\ic\expo{-\ic\pi/4}\Gamma\pars{\half}
\bracks{{\ic\pi \over 2} + \Psi\pars{\half}}
\\[3mm]&=\root{\pi \over 2}\pars{1 + \ic}\bracks{{\ic\pi \over 2} - \gamma - 2\ln\pars{2}}
\end{align}
$\ds{\gamma}$ es la
De Euler-Mascheroni Constante ${\bf\mbox{6.1.3}}$ y hemos utilizado las identidades
$\ds{\Gamma\pars{\half} = \root{\pi}}$ y
$\ds{\Psi\pars{\half}=-\gamma - 2\ln\pars{2}}$.
\begin{align}
I&=\Re\int_{0}^{\infty}\int_{0}^{\infty}
{\ln\pars{x}\ln\pars{y} \over \root{xy}}\,\expo{\ic\pars{x + y}}\,\dd x\,\dd y
\\[3mm]&=\Re\pars{\braces{\root{\pi \over 2}\pars{1 + \ic}\bracks{{\ic\pi \over 2} - \gamma - 2\ln\pars{2}}}^{2}}
\\[3mm]&=\Re\pars{{\pi \over 2}\,2\ic\braces{\bracks{\gamma + 2\ln\pars{2}}^{2} - {\pi^{2} \over 4} - \ic\pi\bracks{\gamma + 2\ln\pars{2}}}}
\end{align}
$$\color{#00f}{\large%
I\equiv\int_{0}^{\infty}\int_{0}^{\infty}
{\ln\pars{x}\ln\pars{y} \\raíz{xy}}\,\cos\pars{x + y}\,\dd x\,\dd y
=\bracks{\gamma + 2\ln\pars{2}}\pi^{2}}
$$