Sabemos las siguientes :
$$\color{red}{{x_1}^2+{x_2}^2-2x_1x_2}=\color{blue}{(x_1-x_2)^2}$$ $$\color{red}{{x_1}^3+{x_2}^3+{x_3}^3-3x_1x_2x_3}$$$$=\frac{1}{2}(x_1+x_2+x_3)\color{blue}{(x_1-x_2)^2}+\frac{1}{2}(x_1+x_2+x_3)\color{blue}{(x_2-x_3)^2}+\frac{1}{2}(x_1+x_2+x_3)\color{blue}{(x_3-x_1)^2}$$
He estado interesado en la generalización de estas identidades. Entonces, llegué a las siguientes :
$$\color{red}{{x_1}^4+{x_2}^4+{x_3}^4+{x_4}^4-4x_1x_2x_3x_4}$$$$=\frac{1}{6}\left(2({x_1}^2+x_1x_2+{x_2}^2)+(x_1+x_2)(x_3+x_4)+2x_3x_4\right)\color{blue}{(x_1-x_2)^2}$$$$ +\frac{1}{6}\left(2({x_1}^2+x_1x_3+{x_3}^2)+(x_1+x_3)(x_2+x_4)+2x_2x_4\right)\color{blue}{(x_1-x_3)^2}$$$$+\frac{1}{6}\left(2({x_1}^2+x_1x_4+{x_4}^2)+(x_1+x_4)(x_2+x_3)+2x_2x_3\right)\color{blue}{(x_1-x_4)^2}$$$$+\frac{1}{6}\left(2({x_2}^2+x_2x_3+{x_3}^2)+(x_2+x_3)(x_1+x_4)+2x_1x_4\right)\color{blue}{(x_2-x_3)^2}$$$$+\frac{1}{6}\left(2({x_2}^2+x_2x_4+{x_4}^2)+(x_2+x_4)(x_1+x_3)+2x_1x_3\right)\color{blue}{(x_2-x_4)^2}$$$$+\frac{1}{6}\left(2({x_3}^2+x_3x_4+{x_4}^2)+(x_3+x_4)(x_1+x_2)+2x_1x_2\right)\color{blue}{(x_3-x_4)^2}$$
$$\color{red}{{x_1}^5+{x_2}^5+{x_3}^5+{x_4}^5+{x_5}^5-5x_1x_2x_3x_4x_5}$$$$\small=F_{1,2}\color{blue}{(x_1-x_2)^2}+F_{1,3}\color{blue}{(x_1-x_3)^2}+F_{1,4}\color{blue}{(x_1-x_4)^2}+F_{1,5}\color{blue}{(x_1-x_5)^2}+F_{2,3}\color{blue}{(x_2-x_3)^2}$$$$\small +F_{2,4}\color{blue}{(x_2-x_4)^2}+F_{2,5}\color{blue}{(x_2-x_5)^2}+F_{3,4}\color{blue}{(x_3-x_4)^2}+F_{3,5}\color{blue}{(x_3-x_5)^2}+F_{4,5}\color{blue}{(x_4-x_5)^2}$$ where $$12F_{1,2}=3({x_1}^3+{x_1}^2{x_2}+{x_1}{x_2}^2+{x_2}^3)+({x_1}^2+{x_1}{x_2}+{x_2}^2)(x_3+x_4+x_5)+(x_1+x_2)(x_3x_4+x_4x_5+x_5x_3)+3x_3x_4x_5$$ $$12F_{1,3}=3({x_1}^3+{x_1}^2{x_3}+{x_1}{x_3}^2+{x_3}^3)+({x_1}^2+{x_1}{x_3}+{x_3}^2)(x_2+x_4+x_5)+(x_1+x_3)(x_2x_4+x_4x_5+x_5x_2)+3x_2x_4x_5$$$$12F_{1,4}=3({x_1}^3+{x_1}^2{x_4}+{x_1}{x_4}^2+{x_4}^3)+({x_1}^2+{x_1}{x_4}+{x_4}^2)(x_2+x_3+x_5)+(x_1+x_4)(x_2x_3+x_3x_5+x_5x_2)+3x_2x_3x_5$$ $$12F_{1,5}=3({x_1}^3+{x_1}^2{x_5}+{x_1}{x_5}^2+{x_5}^3)+({x_1}^2+{x_1}{x_5}+{x_5}^2)(x_2+x_3+x_4)+(x_1+x_5)(x_2x_3+x_3x_4+x_4x_2)+3x_2x_3x_4$$$$12F_{2,3}=3({x_2}^3+{x_2}^2{x_3}+{x_2}{x_3}^2+{x_3}^3)+({x_2}^2+{x_2}{x_3}+{x_3}^2)(x_1+x_4+x_5)+(x_2+x_3)(x_1x_4+x_4x_5+x_5x_1)+3x_1x_4x_5$$$$12F_{2,4}=3({x_2}^3+{x_2}^2{x_4}+{x_2}{x_4}^2+{x_4}^3)+({x_2}^2+{x_2}{x_4}+{x_4}^2)(x_1+x_3+x_5)+(x_2+x_4)(x_1x_3+x_3x_5+x_5x_1)+3x_1x_3x_5$$$$12F_{2,5}=3({x_2}^3+{x_2}^2{x_5}+{x_2}{x_5}^2+{x_5}^3)+({x_2}^2+{x_2}{x_5}+{x_5}^2)(x_1+x_3+x_4)+(x_2+x_5)(x_1x_3+x_3x_4+x_4x_1)+3x_1x_3x_4$$$$12F_{3,4}=3({x_3}^3+{x_3}^2{x_4}+{x_3}{x_4}^2+{x_4}^3)+({x_3}^2+{x_3}{x_4}+{x_4}^2)(x_1+x_2+x_5)+(x_3+x_4)(x_1x_2+x_2x_5+x_5x_1)+3x_1x_2x_5$$$$12F_{3,5}=3({x_3}^3+{x_3}^2{x_5}+{x_3}{x_5}^2+{x_5}^3)+({x_3}^2+{x_3}{x_5}+{x_5}^2)(x_1+x_2+x_4)+(x_3+x_5)(x_1x_2+x_2x_4+x_4x_1)+3x_1x_2x_4$$$$12F_{4,5}=3({x_4}^3+{x_4}^2{x_5}+{x_4}{x_5}^2+{x_5}^3)+({x_4}^2+{x_4}{x_5}+{x_5}^2)(x_1+x_2+x_3)+(x_4+x_5)(x_1x_2+x_2x_3+x_3x_1)+3x_1x_2x_3$$ Aquí, tengo una conjetura.
Pregunta : Es la siguiente conjetura verdadera?
Conjetura : Para cualquier $n\ (\ge 2\in\mathbb N)$ variables $x_1,\cdots,x_n$, el siguiente tiene.
$$\sum_{i=1}^{n}{x_i}^n-n\prod_{i=1}^{n}x_i=\sum_{1\le i\lt j\le n}(x_i-x_j)^2\sum_{k=0}^{n-2}\frac{\left(\sum_{m=0}^{k}{x_i}^m{x_j}^{k-m}\right)\cdot s_{n-2,n-2-k}(\not= x_i,x_j)}{{(n-1)\binom{n-2}{k}}}$$
donde $s_{n-2,n-2-k}(\not= x_i,x_j)=s_{n-2,n-2-k}(x_1,\cdots,x_{i-1},x_{i+1},\cdots,x_{j-1},x_{j+1},\cdots,x_n)$ $s_{n,k}(x_1,\cdots,x_n)$ es la suma de $\binom{n}{k}$ de los productos de cada $k$ elementos escogidos de$\{x_1,\cdots,x_n\}$$s_{n,0}(x_1,\cdots,x_n)=1$.
Ya he comprobado que esto es cierto para $n=2,3,4,5,6$$7$, pero no tengo ninguna buena idea para demostrar que. Alguien puede ayudar?