He estado usando modelos lineales para llevar a cabo 2 muestra la proporción de las pruebas por un tiempo, pero se han dado cuenta de que podría no ser del todo correcto. Parece que el uso de un modelo lineal generalizado con un binomio de la familia + de identidad enlace da exactamente el unpooled 2-proporción de la muestra los resultados de la prueba. Sin embargo, el uso de un modelo lineal (o glm con gaussiano de la familia) le da un poco diferente resultado. Yo soy la racionalización de que esto podría ser debido a la forma de R soluciona glm para binomial vs gaussiano familias, pero podría haber otra causa?
## prop.test gives pooled 2-sample proportion result
## glm w/ binomial family gives unpooled 2-sample proportion result
## lm and glm w/ gaussian family give unknown result
library(dplyr)
library(broom)
set.seed(12345)
## set up dataframe -------------------------
n_A <- 5000
n_B <- 5000
outcome <- rbinom(
n = n_A + n_B,
size = 1,
prob = 0.5
)
treatment <- c(
rep("A", n_A),
rep("B", n_B)
)
df <- tbl_df(data.frame(outcome = outcome, treatment = treatment))
## by hand, 2-sample prop tests ---------------------------------------------
p_A <- sum(df$outcome[df$treatment == "A"])/n_A
p_B <- sum(df$outcome[df$treatment == "B"])/n_B
p_pooled <- sum(df$outcome)/(n_A + n_B)
z_pooled <- (p_B - p_A) / sqrt( p_pooled * (1 - p_pooled) * (1/n_A + 1/n_B) )
pvalue_pooled <- 2*(1-pnorm(abs(z_pooled)))
z_unpooled <- (p_B - p_A) / sqrt( (p_A * (1 - p_A))/n_A + (p_B * (1 - p_B))/n_B )
pvalue_unpooled <- 2*(1-pnorm(abs(z_unpooled)))
## using prop.test --------------------------------------
res_prop_test <- tidy(prop.test(
x = c(sum(df$outcome[df$treatment == "A"]),
sum(df$outcome[df$treatment == "B"])),
n = c(n_A, n_B),
correct = FALSE
))
res_prop_test # same as pvalue_pooled
all.equal(res_prop_test$p.value, pvalue_pooled)
# [1] TRUE
# using glm with identity link -----------------------------------
res_glm_binomial <- df %>%
do(tidy(glm(outcome ~ treatment, family = binomial(link = "identity")))) %>%
filter(term == "treatmentB")
res_glm_binomial # same as p_unpooled
all.equal(res_glm_binomial$p.value, pvalue_unpooled)
# [1] TRUE
## glm and lm gaussian --------------------------------
res_glm <- df %>%
do(tidy(glm(outcome ~ treatment))) %>%
filter(term == "treatmentB")
res_glm
all.equal(res_glm$p.value, pvalue_unpooled)
all.equal(res_glm$p.value, pvalue_pooled)
res_lm <- df %>%
do(tidy(lm(outcome ~ treatment))) %>%
filter(term == "treatmentB")
res_lm
all.equal(res_lm$p.value, pvalue_unpooled)
all.equal(res_lm$p.value, pvalue_pooled)
all.equal(res_lm$p.value, res_glm$p.value)
# [1] TRUE