Esto no es una respuesta completa.De respuesta de usuario You're In My Eye
.Primero, vamos a hacer las siguientes sustituciones:
$$y=\sin \frac{x}{2}$$
$$B=\frac{1+A}{\sqrt{A}} \omega$$
$$2 \int_0^1 \sin \left( B~ \text{arctanh}~\sqrt{\frac{1-y^2}{1+Ay^2}} \right) \frac{dy}{\sqrt{1+Ay^2}}$$
sustituciones:
$$ $ y={\frac { \sqrt{- \left ({t}^{2}+1 \right) \left( {t}^{2}-1
\right) }}{A{t}^{2}+1}}
$$
A continuación, se obtiene:
$$2\, \sqrt {+1}\int_{0}^{1}\!{\frac {\sin \left( B{\rm arctanh} \left(t
\right) \right) t}{ \left ({t}^{2}+1 \right) \sqrt{-{t}^{2}+1}}}
\,{\rm d}t
$$
sustituciones:
$$t=\tanh \left( k \right) $$
tiene :
$$2\,\sqrt {+1}\int_{0}^{\infty }\!{\frac {\sin \left( Bk \right) \sinh
\left( k \right) }{Un \left( \cosh \left( k \right) \right) ^{2}+
\left( \cosh \left( k \right) \right) ^{2} -}}\, {\rm d}k
$$
trig identidad:
cosh(k)^2-sinh(k)^2 = 1
y A+1=m
$$2\, \sqrt {+1}\int_{0}^{\infty }\!{\frac {\sin \left( Bk \right) \sinh
\left( k \right) }{1+ \left( A+1 \right) \left( \sinh \left( k
\right) \right) ^{2}}}\,{\rm d}k \etiqueta{1}
$$
Tengo una simple forma de la integral:
$$2\, \sqrt{m}\int_{0}^{\infty }\!{\frac {\sin \left( B k \right) \sinh
\left( k \right) }{1+m \left( \sinh \left( k \right) \right) ^{2}}}
\,{\rm d}k
$$
Sustituciones de vuelta a $$B=\frac{1+A}{\sqrt{A}} \omega$$ a de la ecuación de 1
.
Tengo:
$$2\, \sqrt {+1}\int_{0}^{\infty }\!{\frac {\sin \left(\frac{1+A}{\sqrt{A}} \omega k \right) \sinh
\left( k \right) }{1+ \left( A+1 \right) \left( \sinh \left( k
\right) \right) ^{2}}}\,{\rm d}k
$$
Mathematica puede encontrar la solución de esta integral.
A = 1/4;
omega = 1;
int = Normal[2*Sqrt[A + 1]*Integrate[(Sin[(1 + A)/Sqrt[A]*omega*k]*Sinh[k])/(
1 + (A + 1)*Sinh[k]^2), {k, 0, Infinity}]]
(*(1/1769)2 Sqrt[5] ((305 -
122 I) ((1/5 + (3 I)/20) Hypergeometric2F1[1, 1 - (5 I)/2,
2 - (5 I)/2, -((1 + 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 1 - (5 I)/2,
2 - (5 I)/2, -((1 - 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 1 - (5 I)/2, 2 - (5 I)/2, (1 - 2 I)/
Sqrt[5]] + (1/5 + (3 I)/20) Hypergeometric2F1[1, 1 - (5 I)/2,
2 - (5 I)/2, (1 + 2 I)/Sqrt[5]]) + (5 +
2 I) (61 ((1/5 + (3 I)/20) Hypergeometric2F1[1, 1 + (5 I)/2,
2 + (5 I)/2, -((1 + 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 1 + (5 I)/2,
2 + (5 I)/2, -((1 - 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 1 + (5 I)/2, 2 + (5 I)/2, (
1 - 2 I)/Sqrt[5]] + (1/5 + (3 I)/20) Hypergeometric2F1[1,
1 + (5 I)/2, 2 + (5 I)/2, (1 + 2 I)/Sqrt[5]]) + (2 +
5 I) ((6 +
5 I) ((1/5 + (3 I)/20) Hypergeometric2F1[1, 3 - (5 I)/2,
4 - (5 I)/2, -((1 + 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 3 - (5 I)/2,
4 - (5 I)/2, -((1 - 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 3 - (5 I)/2, 4 - (5 I)/2, (
1 - 2 I)/Sqrt[5]] + (1/5 + (3 I)/20) Hypergeometric2F1[
1, 3 - (5 I)/2, 4 - (5 I)/2, (1 + 2 I)/Sqrt[5]]) - (6 -
5 I) ((1/5 + (3 I)/20) Hypergeometric2F1[1, 3 + (5 I)/2,
4 + (5 I)/2, -((1 + 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 3 + (5 I)/2,
4 + (5 I)/2, -((1 - 2 I)/Sqrt[5])] + (1/5 - (3 I)/
20) Hypergeometric2F1[1, 3 + (5 I)/2, 4 + (5 I)/2, (
1 - 2 I)/Sqrt[5]] + (1/5 + (3 I)/20) Hypergeometric2F1[
1, 3 + (5 I)/2, 4 + (5 I)/2, (1 + 2 I)/Sqrt[5]]))))*)