$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\mc{Q}_{N} \equiv \prod_{n = 1}^{N}\pars{n + 1 \over n}^{1/n}\,,\qquad\lim_{N \to \infty}\mc{Q}_{N} =\ {\large ?}}$
\begin{align} \ln\pars{\mc{Q}_{N}} & = \sum_{n = 1}^{N}{1 \over n}\,\ln\pars{n + 1 \over n} = \sum_{n = 1}^{N}{1 \over n}\int_{0}^{1}{\dd t \over n + t} = \int_{0}^{1}\sum_{n = 0}^{N - 1}{1 \over \pars{n + 1}\pars{n + 1 + t}}\dd t \\[5mm] & = \int_{0}^{1}\sum_{n = 0}^{N - 1}\pars{{1 \over n + 1} - {1 \over n + 1 + t}} {\dd t \over t} \\[5mm] & = \int_{0}^{1}\pars{H_{N} -\sum_{n = 0}^{N - 1}{1 \over n + 1 + t}} {\dd t \over t}\qquad\pars{~H_{z}: Número\ armónico~} \\[5mm] & = \int_{0}^{1}\bracks{H_{N} - \sum_{n = 0}^{\infty}\pars{{1 \over n + 1 + t} - {1 \over n + N + 1 + t}}} {\dd t \over t} = \int_{0}^{1}{H_{N} - H_{t + N} + H_{t} \over t}\dd t \\[5mm] & \implies \bbx{\lim_{N \to \infty}\ln\pars{\mc{Q}_{N}} = \int_{0}^{1}{H_{t} \over t}\dd t} \end{align}
$$ \bbox[#ffe,15px,border:1px dotted navy]{\ds{% \prod_{n = 1}^{\infty}\pars{n + 1 \over n}^{1/n} = \exp\pars{\int_{0}^{1}{H_{t} \over t}\dd t}}}\,,\qquad \pars{\substack{\mbox{Parece una expresión 'cerrada',}\\ \mbox{más allá de esta,}\\[2mm] \mbox{es\ {\large muy\ improbable}}} $$
Un enfoque 'numérico' arroja $\ds{\approx 3.5175 \approx \expo{5.031/4}}$.