$u(x,y):=\phi({x\over y})$ donde $y\not=0$.
$u_x(x,y)=\phi'({x\over y}){1\over y}$
$u_{xx}(x,y)=\phi''({x\over y}){1\over y^2}$
La computación similar da como resultado :
$u_y(x,y)=\phi'({x\over y}){x}$
$u_{yy}(x,y)=\phi''({x\over y}){x^2}$
$u_{xx}(x,y)+u_{yy}(x,y)=\phi''({x\over y})({x^2}+{1\over y^2})=0$
Por lo tanto, podemos elegir $\phi$ de manera que $\phi''(t)=0$ para todo $t\in \mathbb{R}$.
Por lo tanto, $\phi(t)=at+b.
$u(x,y):=\phi({{x^2+y^2}\over x^2})$ donde $x\not=0$.
$u_x(x,y)=\phi'({{x^2+y^2}\over x^2}){y^2 ({-2\over x^3})}$
$u_{xx}(x,y)=-2y^2[{1\over x^3}\phi''({{x^2+y^2}\over x^2}){y^2 {-2\over x^3}}+\phi'({{x^2+y^2}\over x^2}){-3\over x^4}]$
$={4y^4\over x^6}\phi''({{x^2+y^2}\over x^2})+{6y^2\over x^4}\phi'({{x^2+y^2}\over x^2})$
La computación similar da como resultado :
$u_y(x,y)$
$=\phi'({{x^2+y^2}\over x^2}){2y\over x^2}$
$u_{yy}(x,y)={2\over x^2}[\phi'({{x^2+y^2}\over x^2})+\phi''({{x^2+y^2}\over x^2}){2y^2\over x^2}]$
$={2\over x^2}\phi'({{x^2+y^2}\over x^2})+\phi''({{x^2+y^2}\over x^2}){4y^2\over x^4}$
Sea $t={{x^2+y^2}\over x^2}$.
$u_{xx}(x,y)+u_{yy}(x,y)=({4y^4\over x^6}+{4y^2\over x^4})\phi''({{x^2+y^2}\over x^2})+({6y^2\over x^4}+{2\over x^2})\phi'({{x^2+y^2}\over x^2})$
$={4y^2\over x^4}({{x^2+y^2}\over x^2})\phi''({{x^2+y^2}\over x^2})+{2\over x^2}({2y^2\over x^2}+{{x^2+y^2}\over x^2})\phi'({{x^2+y^2}\over x^2})$
$={4\over x^2}(t-1)t\phi''(t)+({4\over x^2}(t-1)+{2\over x^2}t)\phi'(t)$
$={4}(t-1)t\phi''(t)+(6t-4)\phi'(t)$
$=(2t-2)t\phi''(t)+(3t-2)\phi'(t)$
$=0$
Wolfram Alpha me da que $\phi(t)=c+\log\left[{{1-\sqrt{1-t}}\over{1+\sqrt{1-t}}}\right]$.