$$\lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-2}}$$
$$\lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2}x}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2(x^2-1)}}$$
$$\lim_\limits{x\to\infty}\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}x}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \lim_\limits{x\to\infty}\sqrt{\dfrac{x-1}{2(x+1)}}$$
$$\dfrac{1}{\sqrt{2}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \lim_\limits{x\to\infty}\sqrt{\dfrac{x+1-2}{2(x+1)}}$$
$$\dfrac{1}{\sqrt{2}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \lim_\limits{x\to\infty}\sqrt{\dfrac{1}{2}-\dfrac{1}{x+1}}$$
$$\dfrac{1}{\sqrt{2}}\le \lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\le \dfrac{1}{\sqrt{2}}$$
In fact we can say $\lim_\limits{x\to\infty}\dfrac{x-1}{\sqrt{2x^2-1}}\to \dfrac{1}{\sqrt{2}}$ from beneath.