En el camino de Xpaul y Jack D'Aurizio,
La misma vieja canción,
$\displaystyle I=\int_{0}^{\infty}{x\over e^x-1}\ln\left({e^x+1\over e^x-1}\right)\mathrm dx$
Realiza el cambio de variable $y=\text{e}^{-x}$,
$\begin{align}I&=\displaystyle \int_{0}^{1}\frac{\mathrm{ln}\left( y\right) \mathrm{ln}\left( y+1\right) -\mathrm{ln}\left( 1-y\right) \mathrm{ln}\left( y\right) }{y-1}dy\\ &=\int_0^1 \dfrac{\ln(1-x)\ln x}{1-x}dx-\int_0^1 \dfrac{\ln(1+x)\ln x}{1-x}dx\\ &=A-B \end{align}$
Define, para $x\in [0;1],$
$\begin{align} R(x)&=\int_0^x \dfrac{\ln t}{1-t}dt\\ &=\int_0^1 \dfrac{x\ln(tx)}{1-tx}dt \end{align}$
Observa que,
$R(0)=0$ y $R(1)=-\dfrac{\pi^2}{6}$
$\begin{align} B&=\int_0^1 \dfrac{\ln(1+x)\ln x}{1-x}dx\\ &=\Big[R(x)\ln(1+x)\Big]_0^1-\int_0^1 \dfrac{R(x)}{1+x}dx\\ &=-\dfrac{\pi^2}{6}\ln 2-\int_0^1 \int_0^1 \dfrac{x\ln(tx)}{(1+x)(1-tx)}dtdx\\ &=-\dfrac{\pi^2}{6}\ln 2-\int_0^1 \int_0^1 \dfrac{x\ln(t)}{(1+x)(1-tx)}dtdx-\int_0^1 \int_0^1 \dfrac{x\ln(x)}{(1+x)(1-tx)}dtdx\\ &=-\dfrac{\pi^2}{6}\ln 2+\left(\int_0^1\int_0^1 \dfrac{\ln t}{(1+x)(1+t)}dtdx-\int_0^1\int_0^1 \dfrac{\ln t}{(1+t)(1-tx)}dtdx\right)-\\ &\int_0^1 \int_0^1 \dfrac{x\ln(x)}{(1+x)(1-tx)}dtdx\\ &=-\dfrac{\pi^2}{6}\ln 2+\ln 2\int_0^1 \dfrac{\ln x}{1+x}dx+\int_0^1 \left[\dfrac{\ln(1-tx)\ln t}{t(t+1)}\right]_{x=0}^{x=1}dt+\int_0^1 \left[\dfrac{\ln(1-tx)\ln x}{1+x}\right]_{t=0}^{t=1}dx\\ &=-\dfrac{\pi^2}{6}\ln 2+\ln 2\int_0^1 \dfrac{\ln x}{1+x}dx+\int_0^1 \dfrac{\ln(1-t)\ln t}{t(t+1)}dt+\int_0^1 \dfrac{\ln(1-x)\ln x}{1+x}dx\\ &=-\dfrac{\pi^2}{6}\ln 2+\ln 2\int_0^1 \dfrac{\ln x}{1+x}dx+\int_0^1 \dfrac{\ln(1-t)\ln t}{t}dt \end{align}$
En la última integral haz el cambio de variable $x=1-t$,
$\displaystyle B=-\dfrac{\pi^2}{6}\ln 2+\ln 2\int_0^1 \dfrac{\ln x}{1+x}dx+\int_0^1 \dfrac{\ln(1-x)\ln x}{1-x}dx$
Es bien sabido que,
$\displaystyle \int_0^1 \dfrac{\ln x}{1+x}dx=-\dfrac{\pi^2}{12}$
(expansión de la serie de Taylor)
Por lo tanto,
$\begin{align}I&=A-B\\ &=\dfrac{\pi^2}{6}\ln 2+\dfrac{\pi^2}{12}\ln 2\\ &=\boxed{\dfrac{\pi^2}{4}\ln 2} \end{align}$