Simplemente como un intento:
Dejemos
$$\begin{aligned} {P_0} &= P\\ {P_{i + 1}} &= \int_0^1 {{P_i}/.P \to \sqrt {x + P} {\text{d}}x}\\ {p_i} &= {P_i}/.P \to 0 \end{aligned}$$
Ahora, podemos escribir el proceso como:
$$\begin{aligned} {P_1} &= \int_0^1 {{P_0}/.P \to \sqrt {x + P} {\text{d}}x} \\ &= \int_0^1 {\sqrt {x + P} {\text{d}}x} \\ &= - \frac{2}{3}\left( {{P^{3/2}} - {{\left( {1 + P} \right)}^{3/2}}} \right)\\ {p_1} &= {P_1}/.P \to 0 = \frac{2}{3} \end{aligned}$$
Y luego:
$$\begin{aligned} {P_2} &= \int_0^1 {{P_1}/.P \to \sqrt {x + P} {\text{d}}x} \\ &= \frac{2}{3}\int_0^1 {\left( {{{\sqrt {x + P} }^{3/2}} - {{\left( {1 + \sqrt {x + P} } \right)}^{3/2}}} \right){\text{d}}x} \\ &= \frac{{ - 2}}{3} \times \frac{{ - 4}}{7}\left( {\left( {{P^{7/4}} - {{\left( {1 + P} \right)}^{7/4}}} \right) + \frac{1}{5}{\text{Locura}}(\frac{3}{2},1)} \right)\\ {\text{Locura}}(\frac{3}{2},1) &= 5\int_0^1 {{{\left( {1 + P} \right)}^{3/2}}/.P \to \sqrt {x + P} {\text{d}}x} \\ &= {\left( {1 + \sqrt {1 + P} } \right)^{5/2}}\left( { - 2 + 5\sqrt {1 + P} } \right) - {\left( {1 + \sqrt P } \right)^{5/2}}\left( { - 2 + 5\sqrt P } \right)\\ p2 &= {P_2}/.P \to 0\\ &= \frac{{ - 2}}{3} \times \frac{{ - 4}}{7}\left( { - 1 + \frac{1}{5}(2 + 12\sqrt 2 )} \right)\\ &= \frac{8}{{35}}\left( {4\sqrt 2 - 1} \right) \end{aligned}$$
También:
$$\begin{aligned} {P_3} &= {\color{Red} {\frac{{ - 2}}{3}\left( {\frac{{ - 4}}{7}\left( {\frac{{ - 8}}{{15}}\left( {{P^{15/8}} - {{\left( {1 + P} \right)}^{15/8}} + \frac{1}{{11}}{\text{Loc}}(\frac{{11}}{4},1)} \right) + \frac{1}{5}{\text{Loc}}(\frac{3}{2},2)} \right)} \right)}}\\ &= {a_1}\left( {{a_2}\left( {{a_3}\left( {{P^{15/8}} - {{\left( {1 + P} \right)}^{15/8}} + {b_3}{\text{Loc}}(11/4,1)} \right) + {b_2}{\text{Loc}}(3/2,2)} \right)} \right)\\ {P_n} &= {a_1}\left( { \cdots \left( {{a_n}\left( {{P^{{2^{n + 1}} - 1/{2^n}}} - {{\left( {1 + P} \right)}^{{2^{n + 1}} - 1/{2^n}}} + {b_n}{\text{Loc}}\left( {\left( {3 \times {2^n} - 1} \right)/{2^{n - 1}},1} \right)} \right) + \cdots } \right)} \right)\\ \end{aligned}$$
Donde:
$$\left\{ \begin{aligned} {a_n} &= \frac{{{2^n}}}{{1 - {2^{1 + n}}}} \hfill \\ {b_n} &= \frac{{{2^n}}}{{3 \times {2^{n - 1}} - 1}} \hfill \\ \end{aligned} \right.$$
Dejemos $P=0$ y expandamos $p_n$ :
$$\begin{aligned} {p_\infty } &= {a_1}\left( { \cdots \left( {{a_n}\left( { - 1 + {b_n}{\text{Loc}}\left( {\left( {3 \times {2^n} - 1} \right)/{2^{n - 1}},1} \right)} \right) + \cdots } \right)} \right)\\ &= 0 + \sum\limits_{j = 1}^\infty {b(j)\left( {\prod\limits_{i = 1}^j a (i)} \right){\text{Loc}}\left( {\left( {3 \times {2^j} - 1} \right)/{2^{j - 1}},\infty } \right)} \\ &= \sum\limits_{j = 1}^\infty {\frac{{3{{( - 1)}^{ - j}}{2^{\frac{1}{2}j(j + 3)}}}}{{\left( {1 - 3 \times {2^j}} \right){{(4;2)}_{j + 1}}}}{\text{Loc}}\left( {\frac{{3 \times {2^j} - 1}}{{{2^{j - 1}}}},\infty } \right)} \end{aligned}$$
${(4;2)_{n + 1}} = QPochhammer\left[ {4,2,1 + n} \right]$
Bueno... Fallé... Es más difícil de calcular...
$${\text{Locura}}(s,\infty ){\text{ }} = C\int \cdots \int_0^1 {{{\left( {1 + P} \right)}^s}/.P \to \sqrt {x + P} {\text{d}}x}$$