Para la Primera Integral $\displaystyle I = \int \sin^2 3xdx..........(1)$
Ahora Sea $\displaystyle J = \int \cos^2 3xdx.................(2)$
Entonces $\displaystyle J+I = \int 1dx = x+\mathcal{C_{1}}$
y $\displaystyle J-I = \int (\cos^2 3x-\sin^2 3x)dx = \int \cos 6xdx = \frac{\sin 6x}{6}+\mathcal{C_{2}}$
Así obtenemos $\displaystyle 2I = x-\frac{\sin 6x}{6}+\mathcal{C}\;,$ Donde $\displaystyle \mathcal{C}= \mathcal{C_{1}}+\mathcal{C_{2}}$
Entonces obtenemos $\displaystyle I = \frac{x}{2}-\frac{\sin 6x}{12}+\mathcal{C_{3}}$
$(b)\;\;$ Sea $\displaystyle \int \tan^{4}xdx\;,$ Ahora Sea $\displaystyle \tan x= t\;,$ Entonces
$\displaystyle \sec^2 xdx = dt\Rightarrow dx = \frac{1}{1+\tan^2 x}dt = \frac{1}{1+t^2}dt$
Así obtenemos $\displaystyle I = \int\frac{t^4}{1+t^2}dt = \int\frac{(t^4-1)+1}{1+t^2}dt = \int\frac{(t^4-1)}{1+t^2}dt+\int\frac{1}{1+t^2}dt$
Así obtenemos $\displaystyle \int\frac{(t^2+1)\cdot (t^2-1)}{t^2+1}dt+\int\frac{1}{1+t^2}dt$
Así obtenemos $\displaystyle I = \frac{t^3}{3}-t+\tan^{-1}(t)+\mathcal{C}=\frac{(\tan x)^3}{3}-\tan x+\tan^{-1}(\tan x)+\mathcal{C}$