Lleve la D.E. $$2 y'^3 + y' - y = 0$$
Diferencie respecto a x. $$ 6 y'^2 y'' + y'' - y' =0$$
Reorganice $$ (6y'^2+1)y'' = y'$$
$$ (6 y'+ \frac 1 {y'})y'' = 1$$
Integre respecto a x $$ \int (6 y'+ \frac 1 {y'})y'' \operatorname{d}x = x+ c_0$$
Aplique la regla de la cadena $\int f(u(x))\frac{\operatorname{d}u}{\operatorname{d}x} \operatorname{d}x = \int f(u)\operatorname{d}u$ $$ \int (6 y'+ \frac 1 {y'}) \operatorname{d}y' = x+ c_0$$
Integre respecto a (y') $$ 3 y'^2 + \ln(y') = x+ c_0$$
Eleve a la exponencial $$ y' e^{3y'^2} = c_1 e^x$$
Aplique el cuadrado y multiplique por 6 $$ 6y'^2 e^{6y'^2} = c_2 e^{2x}$$
$\because z e^z = a \iff z= \operatorname{W}_n(a)$, la función logaritmo producto.
$$ 6y'^2 = \operatorname{W}_n(c_2 e^{2x})$$
Divida por 6 y luego tome la raíz cuadrada $$ y' = \pm \sqrt{\frac16 \operatorname{W}_n(c_2 e^{2x})}$$
Integre respecto a x $$ y = \pm \int \sqrt{\frac16 \operatorname{W}_n(c_2 e^{2x})} \operatorname{d} x$$
Sustituya $e^x = u, \operatorname{d}x = u^{-1}\operatorname{d}u$ $$ y = \pm \sqrt{\frac{1}{6}} \int \frac1{u} \sqrt{\operatorname{W}_n(c_2 u^{2})} \operatorname{d} u$$
Sustituya $c_2 u^2 = v, 2 c_2 u\operatorname{d}u = \operatorname{d}v$ $$ y = \pm \frac 1 2 \sqrt{\frac 1 6} \int \frac1{v} \sqrt{\operatorname{W}_n(v)} \operatorname{d} v$$
Dado:
$$\frac{\operatorname{d}}{\operatorname{d}v} \operatorname{W}_n(v) = \frac{\operatorname{W}_n(v)}{v\operatorname{W}_n(v)+v}$$
Por lo tanto $$\frac{\operatorname{d}}{\operatorname{d}v} \sqrt{ \operatorname{W}_n(v) } = \frac{1}{2 \sqrt{\operatorname{W}_n(v)}} \frac{\operatorname{W}_n(v)}{v\operatorname{W}_n(v)+v}$$
$$\frac{\operatorname{d}}{\operatorname{d}v} \sqrt{ \operatorname{W}_n(v) } = \frac{1}{2} \frac{\sqrt{\operatorname{W}_n(v)}}{v\operatorname{W}_n(v)+v}$$
De manera similar
$$\frac{\operatorname{d}}{\operatorname{d}v} \operatorname{W}_n(v)^{\frac 32} = \frac 32 \frac{\operatorname{W}_n(v)^{\frac 32}}{v\operatorname{W}_n(v)+v}$$
Entonces $$\frac{\operatorname{d}}{\operatorname{d}v}\left(\frac{2}{3} \operatorname{W}_n(v)^{\frac 32} + 2 \operatorname{W}_n(v)^{\frac 12}\right) = \frac{\operatorname{W}_n(v)^{\frac 1 2}}{v}$$
$$ y = \pm \frac 1 2 \sqrt{\frac 1 6} \int \frac1{v} \sqrt{\operatorname{W}_n(v)} \operatorname{d} v$$
$$ y = \pm \frac 1 2 \sqrt{\frac 1 6} \left(\frac{2}{3} \operatorname{W}_n(v)^{\frac 32} + 2 \operatorname{W}_n(v)^{\frac 12}\right) + c_3$$
Sustituya $v=c_2 u^2, u=e^x \therefore v = c_2 e^{2x}$
$$ y = \pm \frac 1 3 \sqrt{\frac 1 6}\left(\operatorname{W}_n(c_2 e^{2x})+3\right) \operatorname{W}_n(c_2 e^{2x})^{\frac 12} + c_3$$
¡Hecho!