$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\LARGE\left. a\right)}$ \begin{align} &\bbox[10px,#ffd]{\ds{\int_{0}^{1}{\dd x \over \pars{x + 1}\bracks{x^{2}\pars{1 - x}}^{1/3}}}} \,\,\,\stackrel{x\ \mapsto\ 1/x}{=}\,\,\, \int_{1}^{\infty}{\dd x \over\pars{x + 1}\pars{x - 1}^{1/3}} \,\,\,\stackrel{x + 1\ \mapsto\ x}{=}\,\,\, \int_{0}^{\infty}{x^{-1/3} \over x + 2}\,\dd x \\[5mm] = &\ \int_{0}^{\infty}x^{-1/3}\int_{0}^{\infty}\expo{-\pars{x + 2}t}\,\dd t\,\dd x = \int_{0}^{\infty}\expo{-2t}\int_{0}^{\infty}x^{-1/3}\expo{-tx}\,\dd x\,\dd t = \int_{0}^{\infty}\expo{-2t}\bracks{t^{-2/3}\,\Gamma\pars{2 \over 3}}\dd t \\[5mm] = &\ \Gamma\pars{2 \over 3}\bracks{2^{-1/3}\int_{0}^{\infty}t^{-2/3}\expo{-t}\,\dd t} = 2^{-1/3}\,\Gamma\pars{2 \over 3}\Gamma\pars{1 \over 3} = 2^{-1/3}\,{\pi \over \sin\pars{\pi/3}} = 2^{-1/3}\,{\pi \over \root{3}/2} \\[5mm] = &\ \bbx{{\root{3} \over 3}\,2^{2/3}\,\pi} \approx 2.8792 \end{align}
$\ds{\LARGE\left. b\right)}$ $\textsf{De aquí en adelante, omitiré algunos detalles porque la integración se asemeja de alguna manera a la anterior}$. \begin{align} &\bbox[10px,#ffd]{\ds{\int_{0}^{1}{\dd x \over \pars{x^{2} + 1}\bracks{x^{2}\pars{1 - x}}^{1/3}}}} \,\,\,\stackrel{x\ \mapsto\ 1/x}{=}\,\,\, \int_{1}^{\infty}{x \over \pars{x^{2} + 1}\pars{x - 1}^{1/3}}\,\dd x \\[5mm] = &\ \Re\int_{1}^{\infty}{\dd x \over \pars{x - \ic}\pars{x - 1}^{1/3}} = \Re\int_{0}^{\infty}{x^{-1/3} \over x + 1 - \ic}\,\dd x = \Re\int_{0}^{\infty}x^{-1/3}\int_{0}^{\infty}\expo{-\pars{x + 1 - \ic}t} \,\dd t\,\dd x \\[5mm] = &\ \Re\int_{0}^{\infty}\expo{-\pars{1 - \ic}t}\ \overbrace{\int_{0}^{\infty}x^{-1/3}\expo{-tx}\,\dd x} ^{\ds{t^{-2/3}\,\Gamma\pars{2/3}}}\ \,\dd t = \Gamma\pars{2 \over 3}\Re\int_{0}^{\infty}t^{-2/3}\expo{-\pars{1 - \ic}t}\,\dd t \\[5mm] = &\ \Gamma\pars{2 \over 3}\Re\bracks{\pars{1 - \ic}^{-1/3} \int_{0}^{\pars{1 - \ic}\infty}t^{-2/3}\expo{-t}\,\dd t} \label{1}\tag{1} \\[5mm] = & \Gamma\pars{2 \over 3}\Re\bracks{2^{-1/6}\exp\pars{{\pi \over 12}\,\ic} \int_{0}^{\infty}t^{-2/3}\expo{-t}\,\dd t} = \Gamma\pars{2 \over 3}2^{-1/6}\cos\pars{\pi \over 12}\Gamma\pars{1 \over 3} \\[5mm] = &\ 2^{-1/6}\root{1 + \cos\pars{\pi/6} \over 2}\,{\pi \over \sin\pars{\pi/3}} = 2^{-2/3}\root{{4 \over 3} + {2\root{3} \over 3}}\,\pi = {2^{-2/3} \over 3}\ \overbrace{\root{12 + 6\root{3}}}^{\ds{3 + \root{3}}}\ \,\pi \\[5mm] = &\ \bbx{{2^{-2/3} \over 3}\pars{3 + \root{3}}\,\pi} \approx 3.1217 \end{align}
En \eqref{1}, la integración se 'cambia' a una integración a lo largo del eje real mediante una integración en un contorno.