11 votos

¿Cómo dibujar una trama de interacción con intervalos de confianza?

Mis intentos:

  1. Yo no podía obtener los intervalos de confianza en interaction.plot()

  2. y por otro lado, plotmeans() del paquete 'gplot' no mostrar dos gráficos. Además, no podía imponer dos plotmeans() gráficos de uno sobre el otro, ya que por defecto, el eje son diferentes.

  3. He tenido algo de éxito utilizando plotCI() del paquete 'gplot' y la superposición de dos gráficos, pero todavía el partido del eje no era perfecto.

Algún consejo sobre cómo hacer una interacción parcela con intervalos de confianza? Ya sea por una función, o consejos sobre cómo superponer plotmeans() o plotCI() gráficos.

ejemplo de código

br=structure(list(tangle = c(140L, 50L, 40L, 140L, 90L, 70L, 110L, 
150L, 150L, 110L, 110L, 50L, 90L, 140L, 110L, 50L, 60L, 40L, 
40L, 130L, 120L, 140L, 70L, 50L, 140L, 120L, 130L, 50L, 40L, 
80L, 140L, 100L, 60L, 70L, 50L, 60L, 60L, 130L, 40L, 130L, 100L, 
70L, 110L, 80L, 120L, 110L, 40L, 100L, 40L, 60L, 120L, 120L, 
70L, 80L, 130L, 60L, 100L, 100L, 60L, 70L, 90L, 100L, 140L, 70L, 
100L, 90L, 130L, 70L, 130L, 40L, 80L, 130L, 150L, 110L, 120L, 
140L, 90L, 60L, 90L, 80L, 120L, 150L, 90L, 150L, 50L, 50L, 100L, 
150L, 80L, 90L, 110L, 150L, 150L, 120L, 80L, 80L), gtangles = c(141L, 
58L, 44L, 154L, 120L, 90L, 128L, 147L, 147L, 120L, 127L, 66L, 
118L, 141L, 111L, 59L, 72L, 45L, 52L, 144L, 139L, 143L, 73L,  
59L, 148L, 141L, 135L, 63L, 51L, 88L, 147L, 110L, 68L, 78L, 63L, 
64L, 70L, 133L, 49L, 129L, 100L, 78L, 128L, 91L, 121L, 109L, 
48L, 113L, 50L, 68L, 135L, 120L, 85L, 97L, 136L, 59L, 112L, 103L, 
62L, 87L, 92L, 116L, 141L, 70L, 121L, 92L, 137L, 85L, 117L, 51L, 
84L, 128L, 162L, 102L, 127L, 151L, 115L, 57L, 93L, 92L, 117L, 
140L, 95L, 159L, 57L, 65L, 130L, 152L, 90L, 117L, 116L, 147L, 
140L, 116L, 98L, 95L), up = c(-1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
-1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, 1L, -1L, -1L, 
1L, 1L, -1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, 
1L, 1L, -1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, -1L, 
1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, -1L, 
-1L, 1L, -1L, 1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, 1L, 1L, 1L, 
-1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, 1L, 
1L, 1L, -1L, 1L, 1L, 1L)), .Names = c("tangle", "gtangles", "up"
), class = "data.frame", row.names = c(NA, -96L))

plotmeans2 <- function(br, alph) {
dt=br;   tmp   <- split(br$gtangles, br$tangle);   
means <- sapply(tmp, mean);  stdev <- sqrt(sapply(tmp, var));  
n <- sapply(tmp,length);  
ciw   <- qt(alph, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, col="black", barcol="blue", lwd=1,ylim=c(40,150),  xlim=c(1,12)); 
par(new=TRUE) dt= subset(br,up==1);   
tmp   <- split(dt$gtangles, dt$tangle);  
means <- sapply(tmp, mean);  
stdev <- sqrt(sapply(tmp, var));  
n <- sapply(tmp,length); 
ciw  <- qt(0.95, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, type='l',col="black", barcol="red", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='+');
abline(v=6);abline(h=90);abline(30,10); par(new=TRUE);
dt=subset(br,up==-1);   
tmp <- split(dt$gtangles, dt$tangle);  
means <- sapply(tmp, mean);  
stdev <- sqrt(sapply(tmp, var));  
n <- sapply(tmp,length); 
ciw <- qt(0.95, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, type='l', col="black", barcol="blue",   lwd=1,ylim=c(40,150), xlim=c(1,12),pch='-');abline(v=6);abline(h=90);
abline(30,10);
}

plotmeans2(br,.95)

12voto

James Sutherland Puntos 2033

También hay un paquete de efectos de Fox y de Hong en R. Vea el J. campamento suave. artículos aquí y aquí para ejemplos con intervalos de confianza y generar código R.

No es absolutamente tan bonita como una solución de ggplot, pero bastante un poco más general y un salvavidas para MLG moderadamente complejos.

5voto

DavLink Puntos 101

Si usted está dispuesto a utilizar ggplot, usted puede probar el siguiente código.

Con un continuo predictor

library(ggplot2)
gp <- ggplot(data=br, aes(x=tangle, y=gtangles)) 
gp + geom_point() + stat_smooth(method="lm", fullrange=T) + facet_grid(. ~ up)

para un facetado de la interacción de la parcela

enter image description here

Para un nivel de interacción de la trama (como la producida por interaction.plot()), sólo tienes que quitar la facetting.

gp <- ggplot(data=br, aes(x=tangle, y=gtangles, colour=factor(up))) 
gp + geom_point() + stat_smooth(method="lm")

enter image description here

Con un discreto predictor

El uso de la ToothGrowth conjunto de datos (ver help(ToothGrowth)),

ToothGrowth$dose.cat <- factor(ToothGrowth$dose, labels=paste("d", 1:3, sep=""))
df <- with(ToothGrowth , aggregate(len, list(supp=supp, dose=dose.cat), mean))
df$se <- with(ToothGrowth , aggregate(len, list(supp=supp, dose=dose.cat), 
              function(x) sd(x)/sqrt(10)))[,3]

opar <- theme_update(panel.grid.major = theme_blank(),
                     panel.grid.minor = theme_blank(),
                     panel.background = theme_rect(colour = "black"))
gp <- ggplot(df, aes(x=dose, y=x, colour=supp, group=supp))
gp + geom_line(aes(linetype=supp), size=.6) + 
     geom_point(aes(shape=supp), size=3) + 
     geom_errorbar(aes(ymax=x+se, ymin=x-se), width=.1)
theme_set(opar)

enter image description here

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X