¿Alguien puede ayudar con la siguiente pregunta?
¿Existen cinco números complejos $z_{1}$, $z_{2}$, $z_{3}$, $z_{4}$ y $z_{5}$ con $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\left|z_{4}\right|+\left|z_{5}\right|=1$ tal que el menor entre $\left|z_{1}\right|+\left|z_{2}\right|-\left|z_{1}+z_{2}\right|$, $\left|z_{1}\right|+\left|z_{3}\right|-\left|z_{1}+z_{3}\right|$, $\left|z_{1}\right|+\left|z_{4}\right|-\left|z_{1}+z_{4}\right|$, $\left|z_{1}\right|+\left|z_{5}\right|-\left|z_{1}+z_{5}\right$, $\left|z_{2}\right|+\left|z_{3}\right|-\left|z_{2}+z_{3}\right|$, $\left|z_{2}\right|+\left|z_{4}\right|-\left|z_{2}+z_{4}\right|$, $\left|z_{2}\right|+\left|z_{5}\right|-\left|z_{2}+z_{5}\right$, $\left|z_{3}\right|+\left|z_{4}\right|-\left|z_{3}+z_{4}\right$, $\left|z_{3}\right|+\left|z_{5}\right|-\left|z_{3}+z_{5}\right$ y $\left|z_{4}\right|+\left|z_{5}\right|-\left|z_{4}+z_{5}\right|$ sea mayor a $8/25$?
¡Gracias!