$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large%
\int_{0}^{\pi/2}{x\sin\pars{x}\cos\pars{x}\over
\bracks{a^{2}\cos^{2}\pars{x} + b^{2}\sin^{2}\pars{x}}^{2}}\,\dd x}
\\[5mm]&=\ \overbrace{\int_{0}^{\pi/2}{x\sin\pars{2x}/2\over\braces{%
a^{2}\bracks{1 + \cos\pars{2x}}/2 + b^{2}\bracks{1 - \cos\pars{2x}}/2}^{2}}\,\dd x}
^{\dsc{2x}\ \ds{\mapsto}\ \dsc{x}}
\\[5mm]&=\half\int_{0}^{\pi}{x\sin\pars{x}\over\bracks{%
a^{2} + b^{2} + \pars{a^{2} - b^{2}}\cos\pars{x}}^{2}}\,\dd x
\\[5mm]&={1 \over 2\pars{a^{2} - b^{2}}}\int_{x\ =\ 0}^{x\ =\ \pi}x\,
\dd\bracks{1 \over a^{2} + b^{2} + \pars{a^{2} - b^{2}}\cos\pars{x}}
\\[1cm]&={1 \over 2\pars{a^{2} - b^{2}}}\,\left.
{x \over a^{2} + b^{2} + \pars{a^{2} - b^{2}}\cos\pars{x}}
\right\vert_{x\ =\ 0}^{x\ =\ \pi}
\\[5mm]&-{1 \over 2\pars{a^{2} - b^{2}}}\ \underbrace{\int_{0}^{\pi}
{\dd x \over a^{2} + b^{2} + \pars{a^{2} - b^{2}}\cos\pars{x}}}
_{\dsc{t}\ \ds{=}\ \dsc{\tan\pars{x \over 2}}}
\\[1cm]&={\pi \over 4b^{2}\pars{a^{2} - b^{2}}}
-{1 \over 2\pars{a^{2} - b^{2}}}\ \overbrace{\int_{0}^{\infty}
{\dd x \over b^{2}t^{2} + a^{2}}}^{\ds{=}\ \dsc{\pi \over 2\verts{ab}}}
={\pi \over 4\verts{b}\pars{a^{2} - b^{2}}}
\pars{{1 \over \verts{b}} - {1 \over \verts{a}}}
\\[5mm]&=\color{#66f}{\large%
{\pi \over 4\verts{a}b^{2}\pars{\verts{a} + \verts{b}}}}
\end{align}