Definir:
$$q_\alpha(F_L)=F^{\leftarrow}(\alpha)=\inf\lbrace{x\in \mathbb{R}\mid F_L(x)\geq \alpha\rbrace}=VaR_\alpha(L)$$
Quiero demostrar que:
$$ES_\alpha = \frac{1}{1-\alpha}\mathbb{E}[\mathbb{1}_{\lbrace{ L\geq q_\alpha(L)\rbrace}}\cdot L] \overset{!!!}{=}\mathbb{E}[L\mid L\geq q_\alpha(L)] $$
Me atasqué en:
$$\mathbb{E}[\mathbb{1}_{\lbrace{ L\geq q_\alpha(L)\rbrace}}\cdot L]= \mathbb{E}[\mathbb{E}[\mathbb{1}_{\lbrace{ L\geq q_\alpha(F_L)\rbrace}}\cdot L\mid L\geq q_\alpha(F_L)]\ ] = \mathbb{E}[\mathbb{1}_{\lbrace{ L\geq q_\alpha(F_L)\rbrace}}\cdot\mathbb{E}[L\mid L\geq q_\alpha(F_L)]\ ]$$
Ahora me gustaría utilizar que $\Pr(L\geq q_\alpha(F_L) \ )=1-\alpha$, pero no sé cómo proceder.