$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
&\color{#66f}{\large\int_{0}^{\infty}{1 - \expo{-t} \over t}\,\expo{-st}\,\dd t}
=\int_{0}^{\infty}\bracks{\expo{-st} - \expo{-\pars{s + 1}t}}\
\overbrace{\int_{0}^{\infty}\expo{-tx}\,\dd x\,\dd t}^{\ds{=\ \color{#c00000}{1 \over t}}}
\\[5mm]&=\int_{0}^{\infty}\int_{0}^{\infty}
\bracks{\expo{-\pars{s + x}t} - \expo{-\pars{s + 1 + x}t}}
\,\dd t\,\dd x
=\int_{0}^{\infty}\pars{{1 \over x + s} - {1 \over x + s + 1}}\,\dd x
\\[5mm]&=\left.\ln\pars{x + s \over x + s + 1}
\right\vert_{\, x\ =\ 0}^{\, x\ \to\ \infty}
=-\ln\pars{s \over s + 1}=\color{#66f}{\large\ln\pars{1 + {1 \over s}}}
\end{align}
Otra forma de evaluar la integral es:
\begin{align}
&\color{#66f}{\large\int_{0}^{\infty}{1 - \expo{-t} \over t}\,\expo{-st}\,\dd t}
=s\int_{0}^{\infty}\ln\pars{t}\expo{-st}\,\dd t
-\pars{s + 1}\int_{0}^{\infty}\ln\pars{t}\expo{-\pars{s + 1}t}\,\dd t
\\[5mm]&=\int_{0}^{\infty}\ln\pars{t \over s}\expo{-t}\,\dd t
-\int_{0}^{\infty}\ln\pars{t \over s + 1}\expo{-t}\,\dd t
=\ln\pars{s + 1 \over s}\
\underbrace{\int_{0}^{\infty}\expo{-t}\,\dd t}_{\ds{=\ \color{#c00000}{1}}}
\\[5mm]&=\color{#66f}{\large\ln\pars{1 + {1 \over s}}}
\end{align}