28 votos

¿Cómo puedo dejar de complicar las pruebas demasiado?

Soy un estudiante de tercer año especializado en Matemáticas. Siempre que me siento para intentar probar algo, simplemente no sé qué ni por dónde empezar. El primer curso de pruebas que tomé fue calificado de manera muy estricta, por lo que perder un detalle muy pequeño me hacía perder muchos puntos (lo cual tiene sentido dado que es una clase introductoria a las pruebas y los "pequeños detalles" podrían no ser tan "pequeños").

Pero después de eso, me pongo demasiado ansioso cuando hago pruebas porque no sé qué tipo de detalle podría estar pasando por alto. Termino completando las pruebas obteniendo muchas pistas sobre dónde comenzar, y me lleva demasiado tiempo hacer una sola prueba (casi 2-3 días por teorema). Y como no quiero equivocarme en las pruebas, sigo buscando recursos para hacer las pruebas; así que básicamente termino no haciendo las pruebas yo mismo. Pero cuando veo las "soluciones" a las pruebas, me doy cuenta de que eran muy simples y yo las he estado complicando mucho.

Realmente amo las matemáticas y quiero poder entender realmente cursos como Análisis Real, y el miedo que siento con las pruebas definitivamente es un problema que quiero superar. Así que mi pregunta es

(i) Si has pasado por esta etapa, ¿cómo lo superaste?

(ii) ¿Hay algún consejo general para comenzar las pruebas?

Gracias.

11voto

nycdanielp Puntos 31

También tengo un problema extremadamente malo con esto, una cosa que me ha ayudado a superar este sentimiento son estas (no exhaustivas) lista de cosas que tengo que recordarme cada vez que comienzo un nuevo curso, o me encuentro con un nuevo tema, o existo en un espacio matemático:

  • La única mejor manera de aprender, y mejorar, es comenzar. Las matemáticas son una habilidad aprendida, y al igual que cualquier habilidad aprendida al principio serás malo en ello, pero mejorarás a medida que sigas practicando e intentando resolver y escribir más problemas. Compara la escritura de pruebas con otras habilidades aprendidas como pintar, cantar, etc.

  • Las matemáticas son un campo increíblemente social, donde la creación de redes con otros matemáticos es algo necesario para mejorar, y la escritura de pruebas es una forma social escrita de esto. La escritura de ensayos es exactamente similar, y como tal está bien que tus compañeros revisen tus pruebas y te den ideas sobre cómo mejorar. Sin embargo, esto en sí mismo es un gran obstáculo (al menos para mí de todos modos) porque te sentirás vulnerable, pero ahí es donde aprenderás. Encuentra una comunidad de estudiantes como tú y estudia y mejora con ellos. La mayoría de los profesores estarían entusiasmados si les presentaras un problema y les pidieras que lo revisaran por ti, porque eso muestra una iniciativa para aprender y disposición para escuchar formas de mejorar.

  • Una perspectiva en la escritura de ensayos que también juega su papel en la escritura de pruebas es esta: escribe todo, con cada pequeño detalle, y luego vuelve y elimina lo innecesario, y haz que parezca que lo sabías todo el tiempo. Pasarás por alto detalles aquí y allá, y notarás que sobreexplicaste partes allí, pero en ese proceso de revisión lo averiguarás y mejorarás.

  • El aprendizaje no es lineal, ¡si te lleva dos o tres días completar un problema o escribir completamente una prueba, está bien! Una cosa que debes recordar es que incluso si son pequeños pasos, si estás haciendo el trabajo y el esfuerzo para mejorar y practicar, llegarás allí.

La línea de base fundamental es: ¡practicar, practicar, practicar, y está perfectamente bien cometer errores porque ahí es donde realmente aprendes! Con cada error aprendes una nueva forma de no seguir esa ruta nuevamente, y con cada error que detectas te vuelves mejor en no cometer esos mismos errores en el futuro. La escritura de pruebas está llena de ellos, e incluso los mejores se equivocan de vez en cuando. Si navegas por las preguntas de nivel superior en este sitio, verás miembros con más de 100k de reputación que han estado en esto durante años admitir que sus respuestas o preguntas estaban equivocadas, y señalar sus errores y cómo los mejoraron. ¡Para encontrar esos, y sentirte tranquilizado, busca en los comentarios de la mayoría de las publicaciones!

8voto

heropup Puntos 29437

De alguna manera, ya has encontrado la respuesta (o al menos, un componente sustancial de ella) y has aludido a ella en tu pregunta:

Pero cuando veo las "soluciones" a las demostraciones, me doy cuenta de que eran muy simples y las he estado complicando demasiado.

Específicamente, aprender a escribir demostraciones es un ejercicio en aprender cómo se escriben demostraciones "buenas"; y como ocurre con muchas asignaturas diferentes, aprendemos mediante ejemplos. La exposición a cómo otros matemáticos escriben demostraciones no solo te enseña las ideas en esas demostraciones, sino también su presentación, estilo de comunicación, rigor y profundidad de elucidación.

Dicho esto, incluso en el ámbito de las demostraciones "buenas" (donde la definición de "buena" quizás sea mejor dejarla al amplio consenso de la comunidad matemática), hay bastante variación en la cantidad de detalle proporcionado. Algunos matemáticos tienden a confundir brevedad y elegancia, afirmando que una demostración especialmente concisa es, por construcción, una buena. Aunque a veces esto pueda ser cierto, no creo que una cosa necesariamente se derive de la otra.

Lo que importa para ti, sin embargo, es la exposición: leer y ver y pensar en muchos tipos diferentes de demostraciones, de diferentes fuentes y áreas de las matemáticas. A través de esta exposición, uno desarrolla su propio estilo y adquiere experiencia en la escritura de demostraciones.

Hay otras formas en las que practicamos la escritura de demostraciones buenas, que es un subconjunto de la comunicación de las matemáticas en general. Por ejemplo, resolver problemas y presentar su solución de manera clara, también es un componente importante. Presentaciones orales en persona o interacciones también son muy útiles.

8voto

Arno Puntos 796

¿Estás seguro de que estás comprendiendo las pruebas con las que estás trabajando? En mi experiencia, no hay tanto margen para una complicación excesiva en matemáticas universitarias. En cambio, algunos estudiantes emplean un enfoque disperso donde mencionan muchas cosas que consideran verdaderas y potencialmente relevantes, y esperan que todos los pasos de una prueba real estén en algún lugar allí.

Para las pruebas que estás escribiendo tú mismo, asegúrate de tener una imagen clara del propósito de cada parte. Incluso puedes considerar dibujar diagramas aquí: Por cada punto que hagas, marca tanto sus pre-requisitos como dónde lo utilizas al final. Haz lo mismo para las soluciones de muestra que encuentres. Cualquier parte que en realidad no contribuya a la conclusión deseada realmente no debería estar allí.

Un ejercicio más avanzado con un objetivo similar es intentar atacar tus pruebas. Si puedes hacerte dudar de ciertas partes, esas son las partes que pueden necesitar más detalle para aclarar por qué esas dudas en realidad no están justificadas. Una forma estructurada de llegar a eso es hacer pequeñas modificaciones en la afirmación que estás tratando de probar que producen algo falso. ¿Qué parte de tu prueba se desmorona?

8voto

Deberías realmente complicar todo si quieres.
También cometer errores.
También escribir tonterías.
Esto no debería ser un tabú.
Luego deja los argumentos que tienes durante 15 minutos (y mira la televisión por ejemplo) y regresa y piensa. "¿Cómo podría expresarse esto de manera simple?" "¿Esto es realmente correcto?". Y luego simplemente intenta de nuevo.
Como verás, esta es una respuesta simple y corta que funcionará.

7voto

DDD4C4U Puntos 6

Creo que la solución es tener un muy buen entendimiento de la teoría. A veces tratamos de resolver problemas sin darle tiempo a la teoría para florecer en nuestras mentes. Alexandar Grothendieck dijo una vez, que no se debería probar nada que no sea trivial.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X