$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$$
\mbox{Nota que}\quad\sum_{k = 0}^{n}{3n \elegir 3k}
=\sum_{k = 0}^{\infty}{3n \elegir 3k}
$$
\begin{align}
&\color{#c00000}{\sum_{k = 0}^{n}{3n \choose 3k}}=
\sum_{k = 0}^{\infty}\oint_{\verts{z}\ =\ a\ >\ 1}
{\pars{1 + z}^{3n} \over z^{3k + 1}}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ a\ >\ 1}{\pars{1 + z}^{3n} \over z}
\sum_{k = 0}^{\infty}\pars{1 \over z^{3}}^{k}\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ a\ >\ 1}{\pars{1 + z}^{3n} \over z}
{1 \over 1 - 1/z^{3}}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ a\ >\ 1}
{z^{2}\pars{1 + z}^{3n} \over z^{3} - 1}\,{\dd z \over 2\pi\ic}
\end{align}
El integrando tiene tres polos en el interior del contorno:
$\quad\ds{z_{m} \equiv \expo{2m\pi\ic/3}\,,\quad m = -1,0,1}$:
\begin{align}
&\color{#c00000}{\sum_{k = 0}^{n}{3n \choose 3k}}=
\sum_{m = -1}^{1}\lim_{z \to z_{m}}
\bracks{\pars{z - z_{m}}\,{z^{2}\pars{1 + z}^{3n} \over z^{3} - 1}}
=\sum_{m = -1}^{1}{z_{m}^{2}\pars{1 + z_{m}}^{3n} \over 3z_{m}^{2}}
\\[5mm]&={1 \over 3}\sum_{m = -1}^{1}\pars{1 + \expo{2m\pi\ic/3}}^{3n}
={1 \over 3}\sum_{m = -1}^{1}\expo{mn\pi\ic}
\pars{\expo{-m\pi\ic/3} + \expo{m\pi\ic/3}}^{3n}
\\[5mm]&={8^{n} \over 3}\sum_{m = -1}^{1}
\pars{-1}^{mn}\cos^{3n}\pars{m\,{\pi \over 3}}
\\[5mm]&={8^{n} \over 3}\bracks{\pars{-1}^{-n}\cos^{3n}\pars{-\,{\pi \over 3}}
+ 1 + \pars{-1}^{n}\cos^{3n}\pars{\pi \over 3}}
={8^{n} \over 3}\bracks{1 + 2\pars{-1}^{n}\pars{\half}^{3n}}
\\[5mm]&={8^{n} \over 3}\bracks{1 + {2\pars{-1}^{n} \over 8^{n}}}
\end{align}
$$
\color{#66f}{\large\sum_{k = 0}^{n}{3n \elegir 3k}
={8^{n} + 2\pars{-1}^{n} \over 3}}
$$