1 votos

Mostrando que el límite de integrales de contorno es cero

Quiero demostrar que

$$\lim\limits_{N \to \infty}{\oint_{C_N}{\frac{z}{\exp(z)-1}}\cdot\frac{dz}{z^{2\cdot k+1}}}=0,$$ donde $C_N=\{z\in \mathbb C : |z|=2\pi(N+\frac{1}{2}) \}$ y $k\in \mathbb N$ es fijo.

Entiendo que esto se cumple:

$$|\oint_{C_N}{\frac{z}{exp(z)-1}}\cdot\frac{dz}{z^{2\cdot k+1}}|\le\oint_{C_N}{|\frac{1}{\exp(z)-1}}\cdot\frac{1}{z^{2\cdot k}}|\le2\pi \cdot 2\pi(N+\frac{1}{2}) \cdot \frac{1}{(2\pi(N+\frac{1}{2}))^{2\cdot k}} \cdot \max\{\frac{1}{|\exp(z)-1|}|z\in C_N\} $$

y sé que $\frac{1}{|\exp(z)-1|}$ tiene un denominador no nulo en $C_N$, y un máximo porque $C_N$ es compacto. Pero tengo problemas para encontrar una cota superior para este término. ¿Alguien podría ayudarme?

1voto

Andrew Tzevas Puntos 23

Sea $\mu=2\pi (N+\frac12)$. Tenemos: $$ z=\mu e^{i\theta}=\mu\left[\cos (\theta) + i \sin (\theta)\right] $$ y $$ e^z-1=e^{\mu \cos(\theta)}[\cos(\mu \sin(\theta))+i\sin (\mu \sin(\theta))]-1=e^{\mu \cos(\theta)}\cos(\mu \sin(\theta))-1+i\sin (\mu \sin(\theta))=F(\theta) $$ Sea $g(\theta)=|F(\theta)|^2$ $$ g(\theta)=|F(\theta)|^2=[e^{\mu \cos(\theta)}\cos(\mu \sin(\theta))-1]^2+[\sin (\mu \sin(\theta))]^2 $$ con $$ \min_{\theta \in [0,2\pi]} g(\theta)=g(\pi) $$ $$ z=\mu e^{i\pi}=-\mu $$ Así $$\max_{z \,\in \, C_N} \frac{1}{|e^z-1|}=\frac{1}{|e^{-\mu}-1|}=\frac{1}{|e^{-2\pi(N+\frac12)}-1|} $$ Dado eso, tenemos: $$ {\oint_{C_N}{\frac{z}{\exp(z)-1}}\cdot\frac{dz}{z^{2\cdot k+1}}} \le\oint_{C_N}{|\frac{1}{\exp(z)-1}}\cdot\frac{1}{z^{2\cdot k}}|\le2\pi \cdot 2\pi(N+\frac{1}{2}) \cdot \frac{1}{(2\pi(N+\frac{1}{2}))^{2\cdot k}} \cdot \frac{1}{|e^{-2\pi(N+\frac12)}-1|}=2\pi \cdot \frac{1}{(2\pi(N+\frac{1}{2}))^{2k-1}} \cdot \frac{1}{|e^{-2\pi(N+\frac12)}-1|} $$ y como $N\to \infty$: $$\lim\limits_{N \to \infty}{\oint_{C_N}{\frac{z}{\exp(z)-1}}\cdot\frac{dz}{z^{2\cdot k+1}}}=\lim_{N \to \infty}2\pi \cdot \frac{1}{(2\pi(N+\frac{1}{2}))^{2k-1}} \cdot \frac{1}{|e^{-2\pi(N+\frac12)}-1|}=2\pi \cdot 0 \cdot 1=0$$


Se asumió que $k \in \mathbb{N}\setminus \{0\}$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X