Según mi calculadora,
$\det\begin{bmatrix}\sin 1 & \sin 2 & \sin 3 \\ \sin 4 & \sin 5 & \sin 6 \\ \sin 7 & \sin 8 & \sin 9\end{bmatrix}=0$
$\det\begin{bmatrix}\sin 1 & \sin 2 & \sin 3 & \sin 4 \\ \sin 5 & \sin 6 & \sin 7 & \sin 8 \\ \sin 9 & \sin 10 & \sin 11 & \sin 12 \\ \sin 13 & \sin 14 & \sin 15 & \sin 16 \end{bmatrix}=0$
$\det\begin{bmatrix}\sin 1 & \sin 2 & \sin 3 & \sin 4 & \sin 5 \\ \sin 6 & \sin 7 & \sin 8 & \sin 9 & \sin 10 \\ \sin 11 & \sin 12 & \sin 13 & \sin 14 & \sin 15 \\ \sin 16 & \sin 17 & \sin 18 & \sin 19 & \sin 20 \\ \sin 21 & \sin 22 & \sin 23 & \sin 24 & \sin 25\end{bmatrix}=0$
Conjeturo que, para $n\ge 3$,
$\det \begin{bmatrix} \sin 1 & \sin 2 & \sin 3 & \dots & \sin n \\ \sin (n+1) & \sin (n+2) & \sin (n+3) & \dots & \sin (2n) \\ \sin (2n+1) & \sin (2n+2) & \sin (2n+3) & \dots & \sin(3n) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sin ((n-1)n+1) & \sin ((n-1)n+2) & \sin ((n-1)n+3) & \dots & \sin (n^2) \end{bmatrix}=0$
¿Es cierta mi conjetura?
Solo he podido demostrar el caso con $n=3$.
$\sin 5 + \sin 7 + [\sin 1 + \sin (-1)] + [\sin 3 + \sin (-3)]$
$=\sin 5 + \sin 7 + [\sin 1 + \sin (-1)] + [\sin 3 + \sin (-3)]$
Reorganiza cada lado:
$[\sin (-3) + \sin 5] + [\sin 1 + \sin 3] + [\sin (-1) + \sin 7]$
$=[\sin (-1) + \sin 3] + [\sin (-3) + \sin 7] + [\sin 1 + \sin 5]$
Usa las fórmulas de suma de productos trigonométricos:
$(\sin 1)(\cos 4) + (\sin 2)(\cos 1) + (\sin 3)(\cos 4)$
$=(\sin 1)(\cos 2) + (\sin 2)(\cos 5) + (\sin 3)(\cos 2)$
Resta $(\sin 1)(\cos 14)+(\sin 2)(\cos 13)+(\sin 3)(\cos 12)$ de ambos lados:
$(\sin 1)(\cos 4 - \cos 14) + (\sin 2)(\cos 1 - \cos 13) + (\sin 3)(\cos 4 - \cos 12)$
$=(\sin 1)(\cos 2 - \cos 14) + (\sin 2)(\cos 5 - \cos 13) + (\sin 3)(\cos 2 - \cos 12)$
Utiliza las fórmulas de suma de productos trigonométricos nuevamente:
$(\sin 1)(\sin 5)(\sin 9)+(\sin 2)(\sin 6)(\sin 7)+(\sin 3)(\sin 4)(\sin 8)$ $=(\sin 1)(\sin 6)(\sin 8)+(\sin 2)(\sin 4)(\sin 9)+(\sin 3)(\sin 5)(\sin 7)$
lo cual es equivalente a
$\det\begin{bmatrix}\sin 1 & \sin 2 & \sin 3 \\ \sin 4 & \sin 5 & \sin 6 \\ \sin 7 & \sin 8 & \sin 9\end{bmatrix}=0$