$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\pi}{x\cos\pars{x} \over 1 + \sin^{2}\pars{x}}\,\dd x =-\,{\pi^{2} \over 4} + \ln^{2}\pars{\root{2} - 1}:\ {\large ?}}$
\begin{align}&\color{#c00000}{\int_{0}^{\pi}% {x\cos\pars{x} \over 1 + \sin^{2}\pars{x}}\,\dd x} =\Im\int_{0}^{\pi}{x\cos\pars{x} \over \sin\pars{x} - \ic}\,\dd x \\[3mm]&=\Im\bracks{\left.\vphantom{\large A}% \ln\pars{\sin\pars{x} - \ic}x\,\right\vert_{\,0}^{\,\pi} -\int_{0}^{\pi}\ln\pars{\sin\pars{x} - \ic}\,\dd x} \\[3mm]&=-\,{\pi^{2} \over 2} -\Im\int_{0}^{\pi}\ln\pars{\sin\pars{x} - \ic}\,\dd x \end{align}
$$ \color{#c00000}{\int_{0}^{\pi}% {x\cos\pars{x} \over 1 + \sin^{2}\pars{x}}\,\dd x} =-\,{\pi^{2} \over 2} -2\ \color{#00f}{\Im\int_{0}^{\pi/2}\ln\pars{\cos\pars{x} - \ic}\,\dd x}\tag{1} $$
Ahora, evaluaremos la "$\color{#00f}{\ds{expresión\ azul}}$": \begin{align}&\color{#00f}{\Im\int_{0}^{\pi/2}\ln\pars{\cos\pars{x} - \ic}\,\dd x} =\Im \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} \ln\pars{{z^{2} + 1 \over 2z} - \ic}\,{\dd z \over \ic z} \\[3mm]&=-\Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} {\ln\pars{z^{2} - 2\ic z + 1} \over z}\,\dd z\ +\ \underbrace{\Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}}{\ln\pars{2z} \over z}\,\dd z}_{\ds{=\ -\,{\pi^{2} \over 8}}} \\[3mm]&=-\,{\pi^{2} \over 8} - \Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} {\ln\pars{z^{2} - 2\ic z + 1} \over z}\,\dd z \end{align}
Reemplazando en $\pars{1}$: $$\color{#c00000}{\int_{0}^{\pi}% {x\cos\pars{x} \over 1 + \sin^{2}\pars{x}}\,\dd x} =-\,{\pi^{2} \over 4} + 2\,\Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} {\ln\pars{z^{2} - 2\ic z + 1} \over z}\,\dd z $$
El segundo término de la derecha se convierte en: \begin{align}&2\,\Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} {\ln\pars{z^{2} - 2\ic z + 1} \over z}\,\dd z \\[3mm]&=-2\Re\int_{1}^{0}{\ln\pars{-y^{2} + 2y + 1} \over \ic y}\,\ic\,\dd y -2\,\Re \int_{0}^{1}{\ln\pars{x^{2} - 2\ic x + 1} \over x}\,\,\dd x \\[3mm]&=2\int_{0}^{1}{\ln\pars{-\bracks{x + r}\bracks{x - 1/r}} \over x}\,\dd x -2\,\Re\int_{0}^{1}{\ln\pars{\bracks{x + r\ic}\bracks{x - \ic/r}} \over x}\,\dd x \end{align} donde $\ds{r \equiv \root{2} - 1}$.
Entonces, \begin{align}&2\,\Re \int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}} {\ln\pars{z^{2} - 2\ic z + 1} \over z}\,\dd z \\[3mm]&=2\int_{0}^{1}{\ln\pars{1 + x/r} \over x}\,\dd x +2\int_{0}^{1}{\ln\pars{1 - rx} \over x}\,\dd x -2\int_{0}^{1}{\Re\ln\pars{\ic + x/r} \over x}\,\dd x \\[3mm]&\phantom{=}-2\int_{0}^{1}{\Re\ln\pars{rx - \ic} \over x}\,\dd x \end{align} Esas integrales se pueden evaluar trivialmente en términos de la función de DiLogaritmo $\ds{{\rm Li}_{2}\pars{z}}$.
$$\color{#66f}{\large\int_{0}^{\pi}% {x\cos\pars{x} \over 1 + \sin^{2}\pars{x}}\,\dd x ={\rm Li}_{2}\pars{3 - 2\root{2}} - 4{\rm Li}_{2}\pars{\root{2} - 1}} \approx {\tt -1.6905} $$