Calcular$$\int_{0}^{\pi/3}\ln^4\left(\frac{\sin x}{\sin(x+\pi/3)}\right)\mathrm dx$$
Mi intento: $$\sin(x+\pi/3)=\sin x\cos(\pi/3)+\sin(x+\pi/3)\cos x=\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cos x$$
$$\int_{0}^{\pi/3}\ln^4\left(\frac{2\sin x}{\sin x+\sqrt{3}\cos x}\right)\mathrm dx$$
$$\int_{0}^{\pi/3}\ln^4\left(\frac{2}{1+\sqrt{3}\cot x}\right)\mathrm dx$$
$u=\frac{2}{1+\sqrt{3}\cot x}$
$u^{'}=\frac{2\sqrt{3}}{\sin^2 x(1+\sqrt{3}\cot x)^2}$
$$\frac{1}{2\sqrt{3}}\int_{0}^{1}\sin^2 x(1+\sqrt{3}\cot x)^2\ln^4(u)\mathrm du$$
$$\frac{2}{\sqrt{3}}\int_{0}^{1}\sin^2 x u^{-2}\ln^4(u)\mathrm du$$
$\cot^2 x=\frac{(2-u)^2}{3u^2}$
usando $1+\cot^2 x=\frac{1}{\sin^2 x}$
$$\frac{2}{\sqrt{3}}\int_{0}^{1}\frac{3u^{2}}{3u^2+(2-u)^2} u^{-2}\ln^4(u)\mathrm du$$
$$\frac{6}{\sqrt{3}}\int_{0}^{1}\frac{1}{3u^2+(2-u)^2}\ln^4(u)\mathrm du$$
$$\frac{3}{\sqrt{3}}\int_{0}^{1}\frac{1}{u^2-u+1}\ln^4(u)\mathrm du$$
No estoy seguro de qué hacer a continuación...