Escribí un pequeño código en Python para calcular esta suma para valores específicos de $n$, para ver hacia dónde se dirige el límite de $n \to \infty$:
import math
def limit(n):
s = 0
for i in range(n,2\*n+1):
s += 1/(n+math.sqrt(i))
return s
for a in range(1,10001):
print "n = " + str(a) + " | limit = " + str(limit(a))
print "n = 1000000 | limit = " + str(limit(1000000))
print "n = 10000000 | limit = " + str(limit(10000000))
Su resultado fue
n = 1 | limit = 0.914213562373
n = 2 | limit = 0.810842411245
n = 3 | limit = 0.785811290103
n = 4 | limit = 0.778993834934
n = 5 | limit = 0.778479980466
n = 6 | limit = 0.780536268748
n = 7 | limit = 0.783702898
n = 8 | limit = 0.787331118896
n = 9 | limit = 0.791109376332
n = 10 | limit = 0.794881504095
$\vdots$
n = 9990 | limit = 0.988051600225
n = 9991 | limit = 0.988052185976
n = 9992 | limit = 0.988052771641
n = 9993 | limit = 0.988053357219
n = 9994 | limit = 0.988053942711
n = 9995 | limit = 0.988054528116
n = 9996 | limit = 0.988055113434
n = 9997 | limit = 0.988055698666
n = 9998 | limit = 0.988056283811
n = 9999 | limit = 0.988056868869
n = 10000 | limit = 0.988057453841
n = 1000000 | limit = 0.998783545517
n = 10000000 | limit = 0.99961478362
A partir de esto, parece acercarse lentamente a $1$.