14 votos

La forma cerrada para ${\large\int}_0^\infty\frac{x-\sin x}{\left(e^x-1\right)x^2}\,dx$

Estoy interesado en una forma cerrada para este aspecto sencillo integral: $$I=\int_0^\infty\frac{x-\sin x}{\left(e^x-1\right)x^2}\,dx$$ Numéricamente, $$I\approx0.235708612100161734103782517656481953570915076546754616988...$$ Tenga en cuenta que si tratamos de dividir la integral en dos partes, cada una con un solo término en el numerador, entonces ambas partes serán divergentes.

15voto

Roger Hoover Puntos 56

$$\frac{x-\sin x}{x^2}=\sum_{n\geq 1}\frac{(-1)^{n+1}}{(2n+1)!}x^{2n-1},$$ y puesto que: $$ \int_{0}^{+\infty}\frac{x^{2n-1}}{e^x-1}\,dx = (2n-1)!\cdot \zeta(2n),$$ tenemos: $$\begin{eqnarray*} &&\int_{0}^{+\infty}\frac{x-\sin x}{x^2(e^x-1)}\,dx = \sum_{n\geq 1}\frac{(-1)^{n+1}}{2n(2n+1)}\zeta(2n)\\&=&\color{red}{\sum_{n\geq 1}\left(-1+n\arctan\frac{1}{n}+\frac{1}{2}\,\log\left(1+\frac{1}{n^2}\right)\right)}\\&=&\color{blue}{\log\sqrt{\frac{\sinh \pi}{\pi}}+\sum_{n\geq 1}\left(-1+n\arctan\frac{1}{n}\right)}.\tag{1}\end{eqnarray*} $$ La combinación de esta identidad con el robjonh la respuesta a otra pregunta, finalmente se obtiene: $$\color{purple}{\int_{0}^{+\infty}\frac{x-\sin x}{x^2(e^x-1)}\,dx=\frac{1}{2}+\frac{5\pi}{24}-\log\sqrt{2\pi}+\frac{1}{4\pi}\operatorname{Li}_2(e^{-2\pi})}.\tag{2}$$


Por otro lado, la identidad reivindicada por user111187, $$ \int_{0}^{+\infty}\frac{x-\sin x}{x(e^x-1)} = \gamma+\Im\log\Gamma(1+i)\tag{3} $$ sigue a partir de la representación integral de la $\log\Gamma$ función y para el de Euler-Mascheroni constante. Teniendo en cuenta la Weierstrass producto de la $\Gamma$ función, $$\Gamma(z+1) = e^{-\gamma z}\prod_{n\geq 1}\left(1+\frac{z}{n}\right)^{-1}e^{\frac{z}{n}}$$ tenemos: $$ \log\Gamma(z+1) = -\gamma z + \sum_{n\geq 1}\left(\frac{z}{n}-\log\left(1+\frac{z}{n}\right)\right)$$ así: $$ \int_{0}^{+\infty}\frac{x-\sin x}{x(e^x-1)}\,dx = \sum_{n\geq 1}\left(\frac{1}{n}-\arctan\frac{1}{n}\right).\tag{4}$$

9voto

Felix Marin Puntos 32763

$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$ $\ds{\int_{0}^{\infty}{x - \sin\pars{x} \\pars{\expo{x} de {- 1}x^{2}}\,\dd x: \ {\large ?}}$.


\begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{x - \sin\pars{x} \over \pars{\expo{x} - 1}x^{2}}\,\dd x} =\int_{0}^{\infty}{1 \over \pars{\expo{x} - 1}x}\,{x - \sin\pars{x} \over x}\,\dd x \\[5mm]&=\int_{0}^{\infty}{1 \over \pars{\expo{x} - 1}x}\,\ \overbrace{\half\int_{-1}^{1}\pars{1 + \ic k x - \expo{\ic k x}}\,\dd k} ^{\dsc{x - \sin\pars{x} \over x}}\ \,\dd x\ =\ \half\int_{-1}^{1}\int_{0}^{\infty}{1 + \ic k x - \expo{\ic k x} \over \pars{\expo{x} - 1}x}\,\dd x\,\dd k \\[5mm]&=\half\int_{-1}^{1}\int_{0}^{\infty} {\expo{-x} + \ic k x\expo{-x} - \expo{-\pars{1 - \ic k}x} \over 1 - \expo{-x}}\ \overbrace{\int_{0}^{\infty}\expo{-xt}\,\dd t}^{\dsc{1 \over x}}\ \dd x\,\dd k \\[5mm]&=\half \int_{-1}^{1}\int_{0}^{\infty}\sum_{n\ =\ 0}^{\infty}\ \int_{0}^{\infty} \bracks{\expo{-\pars{n + 1 + t}x}\ +\ \ic k x\expo{-\pars{n + 1 + t}x}\ -\ \expo{-\pars{n + 1 + t - \ic k}x}\,\,} \,\dd x\,\dd t\,\dd k \\[5mm]&=\half \int_{-1}^{1}\int_{0}^{\infty}\sum_{n\ =\ 0}^{\infty}\ \bracks{{1 \over n + 1 + t}\ +\ {\ic k \over \pars{n + 1 + t}^{2}}\ -\ {1 \over n + 1 + t - \ic k}}\,\dd t\,\dd k \\[5mm]&=\half \int_{-1}^{1}\int_{0}^{\infty}\sum_{n\ =\ 0}^{\infty}\ \bracks{{\ic k \over \pars{n + 1 + t}^{2}} -{\ic k \over \pars{n + 1 + t}\pars{n + 1 + t - \ic k}}}\,\dd t\,\dd k \\[5mm]&=\half\int_{-1}^{1}\int_{0}^{\infty} \bracks{\Psi\pars{1 + t -\ic k} - \Psi\pars{1 + t}}\,\dd t\,\dd k \end{align} donde $\ds{\Psi}$ es la Digamma Función.


A continuación, \begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{x - \sin\pars{x} \over \pars{\expo{x} - 1}x^{2}}\,\dd x} =\left.\half\int_{-1}^{1} \ln\pars{\Gamma\pars{1 + t - \ic k} \over \Gamma\pars{1 + t}} \right\vert_{\, t\ =\ 0}^{\, t\ \to\ \infty}\,\dd k \\[5mm]&=-\,\half\int_{-1}^{1}\ln\pars{\Gamma\pars{1 - \ic k}}\,\dd k =\dsc{-\,\Re\int_{0}^{1}\ln\pars{\Gamma\pars{1 - \ic k}}\,\dd k}\tag{1} \end{align}


Sin embargo, \begin{align}&\dsc{-\,\Re\int_{0}^{1}\ln\pars{\Gamma\pars{1 - \ic k}}\,\dd k} =-\,\Re\int_{0}^{1}\ln\pars{-\ic k\Gamma\pars{-\ic k}}\,\dd k \\[5mm]&=-\int_{0}^{1}\ln\pars{k}\,\dd k -\Re\int_{0}^{1}\ln\pars{\Gamma\pars{-\ic k}}\,\dd k =1-\Re\int_{0}^{1} \ln\pars{\pi \over \Gamma\pars{1 + \ic k}\sin\pars{\pi\bracks{-\ic k}}}\,\dd k \\[5mm]&=1 - \ln\pars{\pi} + \Re\int_{0}^{1}\ln\pars{ \Gamma\pars{1 + \ic k}}\,\dd k +\Re\int_{0}^{1}\ln\pars{-\ic\sinh\pars{\pi k}}\,\dd k \\[5mm]&=1 - \ln\pars{\pi} +\dsc{\Re\int_{0}^{1}\ln\pars{ \Gamma\pars{1 - \ic k}}\,\dd k} +\int_{0}^{1}\ln\pars{\sinh\pars{\pi k}}\,\dd k \\[1cm]&\imp\quad \dsc{-\,\Re\int_{0}^{1}\ln\pars{\Gamma\pars{1 - \ic k}}\,\dd k} =\half - \half\,\ln\pars{\pi} +\half\int_{0}^{1}\ln\pars{\sinh\pars{\pi k}}\,\dd k \\[5mm]&=\half - \half\,\ln\pars{\pi} +\half\int_{0}^{1}\bracks{\pi k + \ln\pars{1 - \expo{-2\pi k}} - \ln\pars{2}} \,\dd k \\[5mm]&=\half - \half\,\ln\pars{2\pi} + {1 \over 4}\,\pi -\half\sum_{n\ =\ 1}{1 \over n}\int_{0}^{1}\expo{-2n\pi k}\,\dd k \\[5mm]&=\half - \half\,\ln\pars{2\pi} + {1 \over 4}\,\pi -\half\sum_{n\ =\ 1}{1 \over n}{\expo{-2n\pi} - 1 \over -2n\pi} \\[5mm]&=\half - \half\,\ln\pars{2\pi} + {1 \over 4}\,\pi +{1 \over 4\pi}\ \overbrace{\sum_{n\ =\ 1}{\pars{\expo{-2\pi}}^{n} \over n^{2}}} ^{\dsc{\Li{2}\pars{\expo{-2\pi}}}}\ -{1 \over 4\pi}\, \overbrace{\sum_{n\ =\ 1}{1 \over n^{2}}}^{\dsc{\pi^{2} \over 6}} \\[5mm]&=\half - \half\,\ln\pars{2\pi} + {5 \over 24}\,\pi +{1 \over 4\pi}\,\Li{2}\pars{\expo{-2\pi}} \end{align}


Sustituyendo en la expresión de $\pars{1}$: \begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{x - \sin\pars{x} \over \pars{\expo{x} - 1}x^{2}}\,\dd x} =\color{#66f}{\large\half - \half\,\ln\pars{2\pi} + {5 \over 24}\,\pi +{1 \over 4\pi}\,\Li{2}\pars{\expo{-2\pi}}} \\[5mm]&\approx {\tt 0.2357} \end{align}

6voto

Godsaur Puntos 121

Esta es otra solución sólo para referencia.

La transformada de laplace de $\displaystyle\frac{x-\sin{x}}{x^2}$ está dado por \begin{align} \mathcal{L}_s\left(\frac{x-\sin{x}}{x^2}\right) &=\int^s_\infty\int^t_\infty\frac{1}{u^2}-\frac{1}{1+u^2}\ du\ dt\tag1\\ &=\int^s_\infty-\frac{1}{t}-\arctan{t}+\frac{\pi}{2}\ dt\\ &=-\ln{s}+\frac{1}{2}\ln(1+s^2)-s\arctan{s}+\frac{\pi}{2}s-1\\ &=\frac{1}{2}\ln\left(1+\frac{1}{s^2}\right)+s\arctan\left(\frac{1}{s}\right)-1 \end{align} Así \begin{align} \int^\infty_0\frac{x-\sin{x}}{x^2(e^x-1)}dx &=\sum^\infty_{n=1}\mathcal{L}_n\left(\frac{x-\sin{x}}{x^2}\right)\tag2\\ &=\frac{1}{2}\sum^\infty_{n=1}\ln\left(1+\frac{1}{n^2}\right)+\sum^\infty_{n=1}\left(n\arctan\left(\frac{1}{n}\right)-1\right)\\ &=\frac{1}{2}\ln\left.\frac{\pi z}{\pi}\prod^\infty_{n=1}\left(1+\frac{z^2}{n^2}\right)\right|_{z=1}+\sum^\infty_{n=1}\sum^\infty_{k=1}\frac{(-1)^k}{(2k+1)n^{2k}}\tag{3}\\ &=\frac{1}{2}\ln\left(\frac{\sinh(\pi)}{\pi}\right)+\sum^\infty_{k=1}\frac{(-1)^k\zeta(2k)}{(2k+1)}\tag4\\ &=\frac{1}{2}\ln\left(\frac{\sinh(\pi)}{\pi}\right)+\frac{1}{2i}\int^{i}_0\left(1-\pi z\cot(\pi z)\right)\ dz\tag5\\ &=\frac{1}{2}\ln\left(\frac{\sinh(\pi)}{\pi}\right)+\frac{1}{2}-\frac{1}{8\pi}\int^{\exp(-2\pi)}_1\frac{\ln{u}(1+u)}{u(1-u)}du\tag6\\ &=\frac{1}{2}\ln\left(\frac{\sinh(\pi)}{\pi}\right)+\frac{1}{2}-\frac{1}{8\pi}\left[2\mathrm{Li}_2(1-u)+\frac{\ln^2{u}}{2}\right]^{\exp(-2\pi)}_1\tag7\\ &=\color{#E2062C}{\frac{1}{2}-\frac{\pi}{4}+\frac{1}{2}\ln\left(\frac{\sinh(\pi)}{\pi}\right)-\frac{1}{4\pi}\mathrm{Li}_2\left(1-e^{-2\pi}\right)} \end{align} Explicación:

$(1)$: Diferenciado en virtud de la integral doble.
$(2)$: Ampliación $(e^{x}-1)^{-1}$.
$(3)$: Ampliación $\arctan\left(n^{-1}\right)$.
$(4)$: Reconocido el Weierstrass producto para $\sinh$, suman en la $n$.
$(5)$: Se utiliza el hecho de que $\displaystyle\pi z\cot(\pi z)=1-2\sum^\infty_{k=1}\zeta(2k)z^{2k}$.
$(6)$: Sustituido $u=e^{2\pi iz}$.
$(7)$: $\displaystyle \frac{\ln{u}(1+u)}{u(1-u)}=\frac{2\ln{u}}{1-u}+\frac{\ln{u}}{u}$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X