2 votos

La integral indefinida $ \int \frac{\sin (x +\alpha)}{\cos^3 x}{\sqrt\frac{\csc x + \sec x}{\csc x - \sec x}}$

$$ \int \frac{\sin (x +\alpha)}{\cos^3 x}{\sqrt\frac{\csc x + \sec x}{\csc x - \sec x}}$$

$$ \int \frac{\sin \left(x +\alpha\right)}{\cos^3 x}{\sqrt\frac{ \cos x +\sin x }{\cos x - \sin x}}$$ $$ \int \frac{\sin \left(x +\alpha\right)}{\cos^3 x}{\frac{\sin x + \cos x}{\sqrt{\cos 2x}}}$$ $$ \sqrt 2 \int \frac{\sin \left(2x +\alpha+ \frac{\pi}{4}\right) + \sin \left(\alpha -\frac{\pi}{4}\right)}{\cos^3 x\cdot\sqrt{\cos 2x}}$$

¿Cómo puedo hacerlo después de esto y deshacerme de la raíz cuadrada?

3voto

alans Puntos 1201

$$I=\int \frac{\sin (x +\alpha)}{\cos^3 x}{\sqrt\frac{ \cos x +\sin x }{\cos x - \sin x}}dx,$$ $$I=\cos{\alpha}\int \frac{\sin x}{\cos^3 x}{\sqrt\frac{ \cos x +\sin x }{\cos x - \sin x}}dx+\sin{\alpha}\int \frac{1}{\cos^2 x}{\sqrt\frac{ \cos x +\sin x }{\cos x - \sin x}}dx,$$ $$I=\cos{\alpha} I_1+\sin{\alpha}I_2,$$ donde $$I_1=\int \tan{x}\sqrt{\frac{1+\tan{x}}{1-\tan{x}}} d(\tan{x}),$$ $$I_2=\int \sqrt{\frac{1+\tan{x}}{1-\tan{x}}}d(\tan{x}).$$ Sustituyendo $t=\tan{x}$ en ambas integrales: $$I_1=\int t\sqrt{\frac{1+t}{1-t}}dt,$$ $$I_2=\int \sqrt{\frac{1+t}{1-t}}.$$

1voto

Aryabhatta2 Puntos 1

Deje que $$I = \int \frac{\sin (x +\alpha)}{\cos^3 x}{\sqrt\frac{\csc x + \sec x}{\csc x - \sec x}}dx$$

$$I = \cos \alpha \int \frac{\sin x+\cos x\cdot \tan \alpha}{\cos x}\cdot \sqrt{\frac{1+\tan x}{1-\tan x}}\cdot \sec^2 xdx$$

Por lo tanto $$I = \cos \alpha \int (\tan \alpha+\tan x)\sqrt{\frac{1+\tan x}{1-\tan x}}\cdot \sec^2 xdx$$

Ahora ponga $\tan x= t\;,$ luego $\sec^2 xdx = dt$

Por lo tanto $$I = \cos \alpha \int (t+\tan \alpha)\sqrt{\frac{1+t}{1-t}}dt = \cos \alpha \int \frac{(t+\tan \alpha)(t+1)}{\sqrt{1-t^2}}dt$$

Por lo tanto $$I = \cos \alpha \int\frac{t^2+(\tan \alpha +1)t+\tan \alpha}{\sqrt{1-t^2}}dt$$

Por lo tanto $$I = \cos \alpha \int\frac{t^2}{\sqrt{1-t^2}}dt+\cos \alpha \int\frac{(\tan \alpha +1)}{\sqrt{1-t^2}}dt+\cos \alpha\int\frac{\tan \alpha}{\sqrt{1-t^2}}dt$$

En el primer paso, ponga $t=\sin \phi\;,$ luego $dt = \cos \phi d\phi$ y en el segundo $(1-t^2)=u^2\;,$ luego $tdt = -udu$

Por lo tanto $$I = \frac{\cos \alpha}{2} \int (1-\cos 2 \phi)d\phi-\cos \alpha (1+\tan \alpha)\int du+\sin \alpha \cdot \sin^{-1}(t)$$

Por lo tanto $$I = \frac{\cos \alpha}{2}\left[\sin^{-1}(t)-t\sqrt{1-t^2}\right]-\cos \alpha(1+\tan \alpha)\sqrt{1-t^2}+\sin\alpha\cdot \sin^{-1}(t)+\mathcal{C}$$

Por lo tanto $$I = \frac{\cos \alpha}{2}\left[\sin^{-1}(\tan x)-t\sqrt{1-\tan^2x}\right]-\cos \alpha(1+\tan \alpha)\sqrt{1-\tan^2x}+\sin \alpha \cdot \sin^{-1}(\tan x)+\mathcal{C}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X