$\large\mbox{Al menos, dos soluciones.}$
Tomemos ${\rm f}\left(p\right) \equiv \mu p + \nu$. $$ 1 - p - \mu\left(\mu p + \nu\right) - \nu - \left(\mu p + \nu\right)\mu = 0 $$
$$ \left(1 - \mu\nu - \nu - \nu\mu\right) + \left(-1 - \mu^{2} - \mu^{2}\right)p = 0 $$
$$ \mu = \pm\,{\sqrt{2} \over 2\,}\,{\rm i}\,, \qquad \nu = {1 \over 2\mu + 1} = {1 \over \pm\,\sqrt{2\,}\,{\rm i} + 1} = {1 \over 3}\,\left(1 \mp \sqrt{2\,}\,{\rm i}\right) $$
$$ \color{#ff0000}{\large% {\rm f}_{-}\left(p\right) \color{#000000}{\ =\ } -\,{\sqrt{2\,} \over 2}\,{\rm i}\,p + {1 \over 3}\,\left(1 + \sqrt{2\,}\,{\rm i}\right)\,, \qquad {\rm f}_{+}\left(p\right) \color{#000000}{\ =\ } {\sqrt{2\,} \over 2}\,{\rm i}\,p + {1 \over 3}\,\left(1 - \sqrt{2\,}\,{\rm i}\right)} $$
$\large\mbox{Solo intentando adivinar:}$
Tomemos $\quad x \equiv {\rm f}\left(p\right)$. Entonces, $$ x{\rm f}'\left(x\right) + {\rm f}\left(x\right) = 1 - p\left(x\right)\,, \quad x{\rm f}\left(x\right) - a{\rm f}\left(a\right) = x - a - \int_{a}^{x}p\left(x'\right)\,{\rm d}x' $$
$$ {\rm f}\left(x\right) = {a\left[{\rm f}\left(a\right) - 1\right] \over x} + 1 - {1 \over x}\int_{a}^{x}p\left(x'\right)\,{\rm d}x' $$