Dejen $(X_t)$ y $(B_t)$ ser dos procesos estocásticos y $0\leq h\leq t$. ¿Siempre tenemos
$$p\left\{X_t\in A\mid \min_{0\leq u\leq t}B_u>a\right\}=p\left\{X_t\in A,\min_{0\leq u\leq h} B_u>a\mid \min_{h\leq u\leq t}B_u>a\right\}\ \ \ ?$$
Tengo que $$p\left\{X_t\in A,\min_{0\leq u\leq h} B_u>a\mid \min_{h\leq u\leq t}B_u>a\right\}=\frac{p\left\{X_t\in A, \min_{0\leq u\leq h} B_u>a, \min_{h\leq u\leq t} B_u>a\right\}}{p\left\{\min_{h\leq u\leq t} B_u>a\right\}}=\frac{p\left\{X_t\in A, \min_{0\leq u\leq t} B_u>a\right\}}{p\left\{\min_{h\leq u\leq t} B_u>a\right\}}$$
Pero no puedo llegar a $$p\left\{\min_{h\leq u\leq t} B_u>a\right\}=p\left\{\min_{0\leq u\leq t} B_u>a\right\},$$ por lo tanto tengo un problema para concluir.