¿Por qué tenemos
- $u_n=\dfrac{1}{\sqrt{n^2-1}}-\dfrac{1}{\sqrt{n^2+1}}=O\left(\dfrac{1}{n^3}\right)$
- $u_n=e-\left(1+\frac{1}{n}\right)^n\sim \dfrac{e}{2n}$
se agradecería cualquier ayuda
¿Por qué tenemos
se agradecería cualquier ayuda
Usando la Expansión Binomial:
$$u_n=\dfrac{1}{\sqrt{n^2-1}}-\dfrac{1}{\sqrt{n^2+1}}\\ =(n^2-1)^{-1/2}-(n^2+1)^{-1/2}\\ =h[(1-h^2)^{-1/2}-(1+h^2)^{-1/2}]\quad h:=n^{-1}\\ =h[(1+h^2/2+...)-(1-h^2/2+...)]\\ =h[h^2+...]\\ =O(h^3)=O(n^{-3})$$
Y usando las Series de $e$ y $\ln$:
$$e-\left(1+\frac1n\right)^n\\ =e-e^{\frac{\ln(1+1/n)}{1/n}}\\ =e-e^{1-1/(2n)+...}=e[1-e^{-1/(2n)+...}]\\ =e[1-(1+(-1/2n)+...)]\\ \sim e/(2n)$$
$$u_n=\dfrac{1}{\sqrt{n^2-1}}-\dfrac{1}{\sqrt{n^2+1}}=$$ $$\dfrac{\sqrt{n^2+1}-\sqrt{n^2-1}}{\sqrt{n^2-1}\sqrt{n^2+1}}=$$ $$\dfrac{(\sqrt{n^2+1}-\sqrt{n^2-1})(\sqrt{n^2+1}+\sqrt{n^2-1})}{\sqrt{n^2-1}\sqrt{n^2+1}(\sqrt{n^2+1}+\sqrt{n^2-1})}=$$ $$\dfrac{n^2+1-n^2+1}{\sqrt{n^2-1}\sqrt{n^2+1}(\sqrt{n^2+1}+\sqrt{n^2-1})}=$$ $$\dfrac{2}{\sqrt{n^2-1}\sqrt{n^2+1}(\sqrt{n^2+1}+\sqrt{n^2-1})}=$$ $$\dfrac{2}{\sqrt{n^4-1}(\sqrt{n^2+1}+\sqrt{n^2-1})}=O\left(\frac{1}{n^3}\right).$$
Para el primero: $$\begin{align} \frac{1}{\sqrt{n^2-1}}-\frac{1}{\sqrt{n^2+1}} &= \frac{1}{n}\left(\frac{1}{\sqrt{1-\frac{1}{n^2}}}-\frac{1}{\sqrt{1+\frac{1}{n^2}}}\right) \\ &= \frac{1}{n}\left(\frac{1}{1-\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)}-\frac{1}{1+\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)}\right) \\ &=\frac{1}{n}\left(\left(1+\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)\right)-\left(1-\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)\right)\right) \\ &=\frac{1}{n}\left(\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)+\frac{1}{2n^2}+o\!\left(\frac{1}{n^2}\right)\right) \\ &=\frac{1}{n}\left(\frac{1}{n^2}+o\!\left(\frac{1}{n^2}\right)\right) \\ &=\frac{1}{n^3}+o\!\left(\frac{1}{n^3}\right) \end{align}$$ utilizando las expansiones de Taylor:
Para el segundo: $$\begin{align} e - \left(1+\frac{1}{n}\right)^n &= e - e^{n\ln\left(1+\frac{1}{n}\right)} = e - e^{n\left(\frac{1}{n}-\frac{1}{2n^2} + o\!\left(\frac{1}{n^2}\right)\right)} \\ &= e^1 - e^{1-\frac{1}{2n} + o\!\left(\frac{1}{n}\right)} \\ &= e\cdot\left( 1 - e^{-\frac{1}{2n} + o\!\left(\frac{1}{n}\right)}\right) \\ &= e\cdot\left( 1 - \left( 1-\frac{1}{2n} + o\!\left(\frac{1}{n}\right)\right)\right) \\ &= e\cdot\left( \frac{1}{2n} + o\!\left(\frac{1}{n}\right)\right) \\ \end{align}$$
utilizando esta vez las expansiones de Taylor:
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.