Tengo que calcular $$ \lim_{m\rightarrow\infty}\sum_{n=0}^{\infty}\frac{1}{m^n} \sum_{k=0}^{\infty} {2k \choose k } {2n \choose k}\left( \frac{-1}{2} \right)^k$$
Sabemos que $$ \sum_{k=0}^{2n} {2k \choose k } {2n \choose k}\left( \frac{-1}{2} \right)^k=\frac{1}{4^n}\binom{2n}{n}=\frac1\pi\int_0^1\frac{x^n\,\mathrm{d}x}{\sqrt{x(1-x)}}$$
entonces
$$ \sum_{k=0}^{\infty} {2k \choose k } {2n \choose k}\left( \frac{-1}{2} \right)^k=\lim_{n\rightarrow\infty} \sum_{k=0}^{2n} {2k \choose k } {2n \choose k}\left( \frac{-1}{2} \right)^k=\lim_{n\rightarrow\infty}\frac{1}{4^n}\binom{2n}{n}=0$$
y
$$ \sum_{n=0}^{\infty}\frac{1}{m^n} \sum_{k=0}^{\infty} {2k \choose k } {2n \choose k}\left( \frac{-1}{2} \right)^k = \sum_{n=0}^{\infty}0=0$$
¿Estoy en lo correcto?