Necesito mostrar: $$\lim_{n \to \infty}\prod\left(1+\frac{1}{n}f\left(\frac{k}{n}\right)\right) = e^{\int_{0}^{1}f(x)dx}$$
Mi intento:
$\lim_{n \to \infty}[\sum_{k=1}^{n}\log(1+\frac{1}{n}f(\frac{k}{n}))-\log(e^{\int_{0}^{1}f(x)dx})= 0 $
$\lim_{n \to \infty}[\sum_{k=1}^{n}\log(1+\frac{1}{n}f(\frac{k}{n}))-\int_{0}^{1}f(x)dx]= 0 $
$\lim_{n \to \infty}[\sum_{k=1}^{n}\log(1+\frac{1}{n}f(\frac{k}{n}))-\log(e^{\sum_{k=1}^{n}\frac{1}{n}f(\frac{k}{n})})]= 0 $
$\lim_{n \to \infty}[\sum_{k=1}^{n}\log(\frac{1+\frac{1}{n}f(\frac{k}{n})}{e^{\frac{1}{n}f(\frac{k}{n})dx}})] = \lim_{n \to \infty}\log((\frac{1+\frac{1}{n}f(\frac{1}{n})}{e^{\frac{1}{n}f(\frac{1}{n})}}))+\cdots+\lim_{n \to \infty}\log((\frac{1+\frac{k}{n}f(\frac{k}{n})}{e^{\frac{1}{n}f(\frac{k}{n})}}))+ \cdots + \lim_{n \to \infty}\log((\frac{1+\frac{1}{n}f(\frac{n}{n})}{e^{\frac{1}{n}f(\frac{n}{n})}})) \cdots (1)$
(Dado que $\log(x)$ es una función continua) $\lim_{n \to \infty}log((\frac{1+\frac{1}{n}f(\frac{k}{n})}{e^{\frac{1}{n}f(\frac{k}{n})}})) = log(\lim_{n \to \infty}(\frac{1+\frac{k}{n}f(\frac{k}{n})}{e^{\frac{1}{n}f(\frac{k}{n})}}))$
Sabemos que $\lim_{n \to \infty}\frac{1}{n}f(\frac{k}{n})\to 0$
Por lo tanto, es de la forma $\lim_{x \to 0}\frac{e^{x}-1}{x} = 1$
Luego $\lim_{n \to \infty}\sum_{k=1}^{n}\log(1+\frac{1}{n}f(\frac{k}{n}))= \lim_{n \to \infty} \sum_{k=1}^{n}\log(1) = 0$
¿Es correcto mi enfoque?