¿Es posible evaluar la suma: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4}$$ Espero que pueda estar relacionado con $\zeta^{\prime} (2)$: $$\zeta^{\prime} (2) = - \sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}$$
¿Hay alguna identidad que funcione para mi serie, que involucre el logaritmo natural, similar a la identidad que: $$\sum_{n=0}^{\infty} \frac{1}{(n+a)(n+b)} = \frac{\psi(a) - \psi(b)}{a-b}$$
También potencialmente relacionado, el análogo de Lüroth de la constante de Khintchine se puede definir de la siguiente manera: $$\sum_{n=1}^{\infty} \frac{\ln (n)}{n(n+1)}$$ como se menciona aquí.
Después de algo de trabajo, se puede demostrar lo siguiente: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{5\ln(2) + 4\ln(3)}{16} + \frac{1}{2} \sum_{k=3}^{\infty} \frac{1}{k} \text{tanh}^{-1} \left( \frac{2}{k} \right)$$ y además: $$\sum_{k=3}^{\infty} \frac{1}{k} \text{tanh}^{-1} \left( \frac{2}{k} \right) = \int_{0}^{2} \left( \frac{\left(1-\pi x \cot(\pi x) \right)}{2x^2} + \frac{1}{x^2 - 1} + \frac{1}{x^2 -4} \right) \, dx$$
EDITAR
He derivado otra forma para mi suma de interés, sin embargo, encontré esta interesante ya que parece que podría ser potencialmente resoluble? $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \int_{0}^{\infty} \left( \frac{\psi^{(0)} (s+3) + \gamma}{(s+2)(s-2)} - \frac{25}{16 (s-2)(s+1)} \right) \, ds$$
A partir de esto, es posible obtener lo siguiente: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{\pi \gamma}{4} i + \frac{25}{48} (\ln (2) - i \pi) - \frac{1}{8} + \frac{1}{16} i \pi + \frac{1}{4} \int_{0}^{i \pi} \psi^{(0)} \left( \frac{4}{1+ e^{u}} \right) \, du$$
$$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{\pi \gamma}{4}i+\frac{25}{48} (\ln (2)-i \pi )+\frac{7 i \pi }{48}-\frac{1}{8}-\frac{\ln (2)}{3} -2 \int_0^{\infty } \frac{t \ln (\Gamma (1-i t))}{\left(t^2+4\right)^2} \, dt$$
$$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = -\frac{1}{8}-\frac{i \pi }{4}+\frac{i \gamma \pi }{4}-\frac{\ln (2)}{16} - 2 \int_{0}^{\infty} \frac{t \ln (\Gamma (-i t)) }{(4+t^2)^2} \, dt$$
$$\implies \sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} =\frac{25}{48} \ln (2) -\frac{1}{8} + \int_{1}^{\infty} \frac{\ln (v-1) \text{li} (v^2)}{v^5} \, dv$$ Donde $\text{li}$ es una función integral logarítmica. $$\sum_{k=3}^{\infty} \frac{\ln(k)}{k^2-4} = \frac{3 \ln (2)}{16} - \frac{\pi^2+1}{8} - \frac{\pi}{2} \int_{0}^{\infty} \sin(4\pi x) (\psi (x) - \ln (x)) \, dx$$