Evalúa: $$\int \frac {\sin (x)}{\sin (x-\alpha) } dx$$
Mi intento: $$=\int \dfrac {\sin (x)}{\sin (x-\alpha) }dx$$ $$=-\int \dfrac {-\sin (x)}{\sin (x).\cos (\alpha) - \cos (x).\sin (\alpha )} dx$$ Déjalo, $\cos (x)=t$ $$-\sin (x).dx=dt$$ Ahora, $$=-\int \dfrac {dt}{\sqrt {1-t^2}.\cos (\alpha)-t.\sin (\alpha)}$$