39 votos

Una forma cerrada de $\sum_{k=1}^\infty \psi^{(1)} (k+a)\psi^{(1)} (k+b)$ ?

Los siguientes resultado $$ \sum_{k=1}^\infty\left(\psi^{(1)} (k)\right)^2 = 3\zeta(3) $$ donde $\psi^{(1)}$ es el función poligamma me hace pensar que hay una buena suma para la serie

$$ \sum_{k=1}^\infty \left(\psi^{(1)} (k+a)\right)^2 $$

o

$$ \sum_{k=1}^\infty \psi^{(1)} (k+a)\psi^{(1)} (k+b) $$

donde $a$ y $b$ son cualesquiera números reales tales que $a >-1, b>-1.$

¿Podría ayudarme a encontrarlo?

6voto

Nikos Bagis Puntos 11

Tenemos $$ \int^{1}_{0}\int^{1}_{0}\frac{\log u\log v}{(1-uv)(1-u)(1-v)}dudv=3\zeta(3) $$ También $$ \int^{1}_{0}\int^{1}_{0}\frac{(uv)^k\log u\log v}{(1-u)(1-v)}dudv=Z(2,k+1)\psi'(k+1)\textrm{, where }Re(k)>-1 $$ La función $Z(s,k)=\sum^{\infty}_{l=0}\frac{1}{(l+k)^s}$ es la función zeta de Hurwitz. Por lo tanto $$ \sum^{a-1}_{k=0}\int^{1}_{0}\int^{1}_{0}\frac{(uv)^k\log u\log v}{(1-u)(1-v)}dudv =\int^{1}_{0}\int^{1}_{0}\frac{(1-(uv)^a)\log u\log v}{(1-uv)(1-u)(1-v)}dudv. $$ Por lo tanto $$ \sum^{\infty}_{k=1}\left(\psi'(k+a)\right)^2=\int^{1}_{0}\int^{1}_{0}\frac{(uv)^a\log u \log v}{(1-u v)(1-u)(1-v)}dudv=3\zeta(3)-\sum^{a-1}_{k=0}Z(2,k+1)\psi'(k+1) $$ Al intentar generalizar el problema tenemos $$ C_{\nu}=\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{\log u_1\ldots \log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots(1-u_{\nu})}=\sum^{\infty}_{l=0}\left(\int^{1}_{0}\frac{u^l\log u}{1-u}du\right)^{\nu}= $$ $$ =\sum^{\infty}_{l=0}\left(-Z(2,l+1)\right)^{\nu} $$ También $$ \underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{u_1^k\ldots u_{\nu}^k \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1)\ldots (1-u_{\nu})}=(-1)^{\nu}Z(2,k+1)(\psi'(k+1))^{\nu-1} $$ Por lo tanto $$ \sum^{a-1}_{k=0}\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{u_1^k\ldots u_{\nu}^k \log u_1\ldots\log u_{\nu}du_{1}\ldots du_{\nu}}{(1-u_1)\ldots (1-u_{\nu})}=(-1)^{\nu}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1}= $$ $$ =\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{(1-u_1^a\ldots u_{\nu}^a) \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots (1-u_{\nu})}. $$ Por lo tanto $$ \underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{(u_1^a\ldots u_{\nu}^a) \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots (1-u_{\nu})}= $$ $$ =C_{\nu}+(-1)^{\nu-1}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1} $$ Y por último $$ \sum^{\infty}_{k=1}\left(\psi'(k+a)\right)^{\nu}=C_{\nu}+(-1)^{\nu-1}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X