14 votos

Empanada Integral $\int_0^1 \log\frac{(x+\sqrt{1-x^2})^2}{(x-\sqrt{1-x^2})^2} \frac{x\, dx}{1-x^2}=\frac{\pi^2}{2}.$

Hola estoy tratando de mostrar este sorprendente resultado$ $ \int_0^1 \log\frac{\big(x+\sqrt{1-x^2}\big) ^ 2} {\big (x-\sqrt {1-x ^ 2} \big) ^ 2} \frac{x\, dx} {1-x ^ 2} = \frac {\pi^2} {2}. Nota de la $$ puede utilizar $\ln(a/b)=\ln a-\ln b$ pero no me ayuda. Después de esto obtuve integrales de la forma $ \int_0^1 \log \big[\big(x\pm\sqrt{1-x^2}\big) ^ 2\big] \frac{x\, dx} {1-x ^ 2} $$ que no sé cómo manejar. Gracias.

16voto

gar Puntos 3883

Deje que

$$$$

\begin{align} I(a)&=\int_0^1 2\, \log\frac{\big(x+a\, \sqrt{1-x^2}\big)}{\big(x-a\, \sqrt{1-x^2}\big)} \frac{x\, dx}{1-x^2} \tag 1\\ \therefore \frac{\partial}{\partial a}I(a) &= 2\, \int_0^1 \left(\frac{\sqrt{1-x^2}}{\big(x+a\, \sqrt{1-x^2}\big)}+\frac{\sqrt{1-x^2}}{\big(x-a\, \sqrt{1-x^2}\big)}\right) \frac{x}{1-x^2}\, dx\\ &= \int_0^{\pi/2} \frac{4\, \tan{(t)}^2}{\tan{(t)}^2-a^2}\, dt \hspace{100pt}\text{(subst. %#%#%)}\\ &= \int_0^{\pi/2} \frac{4\, \tan{(t)}^2}{(\tan{(t)}^2-a^2)(1+\tan{(t)}^2)} \sec{(t)}^2 \, dt\\ &= \int_0^{\infty} \frac{4\, y^2}{(y^2-a^2)(1+y^2)} \, dy \hspace{82pt}\text{(subst. %#%#%)}\\ &= \int_0^{\infty} \frac{1}{1+a^2}\left(\frac{2a}{y-a}-\frac{2a}{y+a}+\frac{4}{1+y^2}\right)\, dy\\ &= \frac{1}{1+a^2}\left(a\, \log\left(\frac{y-a}{y+a}\right)^2 +4\arctan{y}\right)\Bigg|_0^\infty\\ &= \frac{2\, \pi}{a^2+1}\\ \implies I(a)&=2\,\pi\arctan{a}+C \tag 2 \end {Alinee el}

Poner $x=\sin{t}$ $\tan{t}=y$ y $a=0$, encontramos que el $(1)$

Por lo tanto, $(2)$ $

y el % integral requiere $C=0$$

11voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\daga}} \newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\a la derecha\vert\,} \newcommand{\cy}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{1} \ln\pars{\bracks{x + \raíz{1 - x^{2}}}^2 \\bracks{x-\raíz{1 - x^2}}^{2}}\, {x\,\dd x \a más de 1 - x^{2}} = {\pi^{2} \over 2}:\ {\large ?}}$

Con $\ds{x \equiv \sin\pars{\theta}}$: \begin{align}&\color{#66f}{\large\int_{0}^{1} \ln\pars{\bracks{x + \root{1 - x^{2}}}^2 \over \bracks{x-\root{1 - x^2}}^{2}}\, {x\,\dd x \over 1 - x^{2}}} \\[3mm]&=-\int_{0}^{\pi/2} \ln\pars{\bracks{\tan\pars{\theta} - 1 \over \tan\pars{\theta} + 1 }^{2}}\, \tan\pars{\theta}\,\dd\theta \\[3mm]&=-\int_{0}^{\pi/2}\ln\pars{\tan^{2}\pars{\theta - {\pi \over 4}}}\, \tan\pars{\theta}\,\dd\theta =-\int_{-\pi/4}^{\pi/4}\ln\pars{\tan^{2}\pars{\theta}}\, \tan\pars{\theta + {\pi \over 4}}\,\dd\theta \\[3mm]&=-\int_{0}^{\pi/4}\ln\pars{\tan^{2}\pars{\theta}}\, \bracks{{1 + \tan\pars{\theta} \over 1 - \tan\pars{\theta}} + {1 - \tan\pars{\theta} \over 1 + \tan\pars{\theta}}}\,\dd\theta \\[3mm]&=-2\int_{0}^{\pi/4}\ln\pars{\tan\pars{\theta}}\, {2\sec^{2}\pars{\theta} \over 1 - \tan^{2}\pars{\theta}}\,\dd\theta =-4\ \overbrace{\int_{0}^{1}{\ln\pars{t} \over 1 - t^{2}}\,\dd t} ^{\ds{-\,{\pi^{2} \over 8}}} =\color{#66f}{\Large{\pi^{2} \over 2}} \end{align}

La última integral se puede evaluar mediante la expansión de $\ds{\pars{1 - t^{2}}^{-1}}$ en potencias de $\ds{t}$: \begin{align}&\color{#c00000}{\int_{0}^{1}{\ln\pars{t} \over 1 - t^{2}}\,\dd t} =\sum_{n = 0}^{\infty}\int_{0}^{1}\ln\pars{t}t^{2n}\,\dd t =\left.\sum_{n = 0}^{\infty}\partiald{}{\mu}\int_{0}^{1}t^{2n + \mu}\,\dd t\, \right\vert_{\,\mu = 0} =-\sum_{n = 0}^{\infty}{1 \over \pars{2n + 1}^{2}} \\[3mm]&=-\sum_{n = 1}^{\infty}{1 \over n^{2}} + \sum_{n = 1}^{\infty}{1 \over \pars{2n}^{2}} =-\,{3 \over 4}\sum_{n = 1}^{\infty}{1 \over n^{2}} = -\,{3 \over 4}\,{\pi^{2} \over 6}=\color{#c00000}{-\,{\pi^{2} \over 8}} \end{align}

7voto

schooner Puntos 1602

Espero que no sea demasiado tarde. Sea $ #% de $$ I(a)=\int_0^1 \log\frac{\big(x+a\sqrt{1-x^2}\big)^2}{\big(x-\sqrt{1-x^2}\big)^2} \frac{x\, dx}{1-x^2}, -1\le a\le 1. $claramente $I(-1)=0$y \begin{eqnarray} I'(a)&=&2\int_0^1 \frac{x}{(x+a\sqrt{1-x^2})\sqrt{1-x^2}}dx\\ &=&2\int_0^{\frac{\pi}{2}}\frac{\sin t}{\sin t+a\cos t}dt. \end{eqnarray} Define $$ A=\int_0^{\frac{\pi}{2}}\frac{\sin t}{\sin t+a\cos t}dt, B=\int_0^{\frac{\pi}{2}}\frac{\cos t}{\sin t+a\cos t}dt $ $ y $$ A+aB=\frac{\pi}{2}, B-aA=-\log |a|.$$ así $A=\frac{\frac{\pi}{2}+a\log |a|}{1+a^2}$. Sin embargo $\frac{a\log |a|}{1+a^2}$ es una función impar de $a$ y $$ I(1)=2\int_{-1}^1\frac{\frac{\pi}{2}+a\log |a|}{1+a^2}da=2\int_{-1}^1\frac{\frac{\pi}{2}}{1+a^2}da=\frac{\pi^2}{2}.$ $

6voto

psychotik Puntos 171

Así que aquí es una solución que sigue la lógica de tanto @gar y @xpaul pero evita el problema de los polos.

Deje $I(a)$ ser definido por

$$ I(a) = \int_{0}^{1} \frac{2x}{1-x^{2}} \log \left| \frac{x + \sqrt{1-x^{2}}}{x + a\sqrt{1-x^{2}}} \right| \, dx. $$

El valor que queremos calcular es $I(-1)$. Con la sustitución de $t = x/\sqrt{1-x^{2}}$ (esta sustitución es esencialmente el mismo en @Felix de la respuesta), se sigue que

$$ I(a) = \int_{0}^{\infty} \frac{2}{1+t^{2}} \log \left| \frac{1+t}{a+t} \right| \, dt = \Re \int_{0}^{\infty} \frac{2}{1+t^{2}} \log \left( \frac{1+t}{a+t} \right) \, dt, $$

donde la rama del logaritmo es el elegido para evitar la mitad superior del plano -. Entonces por DCT,

$$ I(a) = \lim_{\epsilon \downarrow 0} \Re \int_{i\epsilon}^{\infty+i\epsilon} \frac{2}{1+t^{2}} \log \left( \frac{1+t}{a+t} \right) \, dt =: \lim_{\epsilon \downarrow 0} I_{\epsilon}(a). $$

Ahora, para $0 < \epsilon \ll 1$, tenemos

\begin{align*} I_{\epsilon}'(a) &= - \Re \int_{i\epsilon}^{\infty+i\epsilon} \frac{2t}{(1+t^{2})(t+a)} \, dt \\ &= - \frac{2a}{1+a^{2}} \Re \int_{i\epsilon}^{\infty+i\epsilon} \left( \frac{1}{a} \frac{1}{1+t^{2}} + \frac{t}{1+t^{2}} - \frac{1}{t + a} \right) \, dt \\ &= - \frac{2a}{1+a^{2}} \Re \left( \frac{\pi}{2a} - \frac{1}{a}\arctan(i\epsilon) + \log(a+i\epsilon) - \log\sqrt{1-\epsilon^{2}} \right) \\ &= - \frac{2a}{1+a^{2}} \left( \frac{\pi}{2a} + \log\sqrt{a^{2}+\epsilon^{2}} - \log\sqrt{1-\epsilon^{2}} \right). \end{align*}

Esto le da, junto con la condición inicial $I_{\epsilon}(1) = 0$, que

$$ I_{\epsilon}(a) = \int_{a}^{1} \frac{2s}{1+s^{2}} \left( \frac{\pi}{2s} + \log\sqrt{s^{2}+\epsilon^{2}} - \log\sqrt{1-\epsilon^{2}} \right) \, ds. $$

Tomando $\epsilon \downarrow$, de nuevo por DCT, obtenemos

$$ I(a) = \int_{a}^{1} \frac{\pi + 2s\log|s|}{1+s^{2}} \, ds. $$

Conectar $a = -1$ se obtiene finalmente la respuesta deseada.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X